
(a)
Interpretation:
The effect of decrease in temperature on given substance and value of equilibrium constant K has to be explained.
Concept Introduction:
Le Chatelier principle states that, whenever a change in temperature, pressure or volume is experienced by a system at equilibrium, the system will undergo reactions to cancel that effect and reattain equilibrium. The equilibrium constant K will change with change in temperature.
For a reaction, if the enthalpy of reaction is negative then that reaction will be exothermic, that is, heat is liberated during the reaction. If enthalpy of reaction is positive then that reaction is endothermic, that is, the heat is absorbed during the reaction.
If the forward reaction is exothermic, then, to increases the products, temperature should be lowered. If the product is more, then equilibrium constant (K) will be more. Similarly in the case of endothermic reaction, increase in the temperature causes the increase in the amount of products.
(b)
Interpretation:
The effect of decrease in temperature on given substance and value of equilibrium constant K has to be explained.
Concept Introduction:
Le Chatelier principle states that, whenever a change in temperature, pressure or volume is experienced by a system at equilibrium, the system will undergo reactions to cancel that effect and reattain equilibrium. The equilibrium constant K will change with change in temperature.
For a reaction, if the enthalpy of reaction
If the forward reaction is exothermic, then, to increases the products, temperature should be lowered. If the product is more, then equilibrium constant (K) will be more. Similarly in the case of endothermic reaction, increase in the temperature causes the increase in the amount of products.
(c)
Interpretation:
The effect of decrease in temperature on given substance and value of equilibrium constant K has to be explained.
Concept Introduction:
Le Chatelier principle states that, whenever a change in temperature, pressure or volume is experienced by a system at equilibrium, the system will undergo reactions to cancel that effect and reattain equilibrium. The equilibrium constant K will change with change in temperature.
For a reaction, if the enthalpy of reaction
If the forward reaction is exothermic, then, to increases the products, temperature should be lowered. If the product is more, then equilibrium constant (K) will be more. Similarly in the case of endothermic reaction, increase in the temperature causes the increase in the amount of products.

Want to see the full answer?
Check out a sample textbook solution
Chapter 17 Solutions
Chemistry: The Molecular Nature of Matter and Change
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardWhat is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forwardLook at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





