
(a)
Interpretation:
The effect of decrease in pressure on the yield of the product has to be predicted.
Concept Introduction:
Le Chatelier principle states that, whenever a change in temperature, pressure or volume is experienced by a system at equilibrium, the system will undergo reactions to cancel that effect and reattain equilibrium.
Changes in pressure have significant effect on the reactions containing gas molecules. When pressure is increased, the system will try to decrease the pressure by reducing the number of gas molecule. That is, the reaction will occur to the direction where the number moles of gases are low. When the pressure is decreased, the reaction will favor in the direction where the number moles of gases are high, so as to increase the pressure.
(b)
Interpretation:
The effect of decrease in pressure on the yield of the product has to be predicted.
Concept Introduction:
Le Chatelier principle states that, whenever a change in temperature, pressure or volume is experienced by a system at equilibrium, the system will undergo reactions to cancel that effect and reattain equilibrium.
Changes in pressure have significant effect on the reactions containing gas molecules. When pressure is increased, the system will try to decrease the pressure by reducing the number of gas molecule. That is, the reaction will occur to the direction where the number moles of gases are low. When the pressure is decreased, the reaction will favor in the direction where the number moles of gases are high, so as to increase the pressure.
(c)
Interpretation:
The effect of decrease in pressure on the yield of the product has to be predicted.
Concept Introduction:
Le Chatelier principle states that, whenever a change in temperature, pressure or volume is experienced by a system at equilibrium, the system will undergo reactions to cancel that effect and reattain equilibrium.
Changes in pressure have significant effect on the reactions containing gas molecules. When pressure is increased, the system will try to decrease the pressure by reducing the number of gas molecule. That is, the reaction will occur to the direction where the number moles of gases are low. When the pressure is decreased, the reaction will favor in the direction where the number moles of gases are high, so as to increase the pressure.

Want to see the full answer?
Check out a sample textbook solution
Chapter 17 Solutions
CONNECT ACCESS CARD FOR CHEMISTRY: MOLECULAR NATURE OF MATTER AND CHANGE
- Convert 1.38 eV into wavelength (nm) and wavenumber (cm-1) (c = 2.998 x 108 m/s; h = 6.626 x 10-34 J*s).arrow_forwardCan you help me understand the CBC method on metal bridging by looking at this problem?arrow_forwardA partir de Aluminio y Co(NO3)2ꞏ6H2O, indicar las reacciones a realizar para obtener Azul de Thenard (Al2CoO4).arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





