Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.5, Problem 12PPA
Interpretation Introduction
Interpretation:
The concentration of free
Concept introduction:
An stability constant due to complex formation in a solution is called formation constant. It is a evaluation of strength of relation between reagents combined to form complex.
To calculate: The concentration of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For [Co(NH3)6]3+ , Kf has a value of 5.00 × 1031. Calculate the concentration of free, uncomplexed Co3+ ions in a solution that contains a total of 0.160 mol/L cobalt III ions and an equilibrium concentration of 0.50 M NH3.
The formation constant of a complex ion [M(NH3)4]2+(aq) is 1.8E8. If a solution is prepared by adding 0.3 mol of [M(NH3)4]Cl2 to 850.0 mL of water, what is the equilibrium concentration of free M2+(aq) ions?
Consider the following complex ion: [Cu(NH3)4]2+
Calculate the concentration of free, uncomplexed Cu2+ ions in a solution that originally contains a total of 1.0 × 10-3 M copper (II) ions and an equilibrium concentration of 0.10 M NH3. (Kf=4.8 x 1012)
Chapter 17 Solutions
Chemistry: Atoms First
Ch. 17.1 - Determine the pH at 25C of a solution prepared by...Ch. 17.1 - Determine the pH at 25C of a solution prepared by...Ch. 17.1 - Determine the pH at 25C of a solution prepared by...Ch. 17.1 - Prob. 1PPCCh. 17.1 - Prob. 17.1.1SRCh. 17.1 - Prob. 17.1.2SRCh. 17.2 - Starting with 1.00 L of a buffer that is 1.00 M in...Ch. 17.2 - Prob. 2PPACh. 17.2 - Prob. 2PPBCh. 17.2 - Prob. 2PPC
Ch. 17.2 - Prob. 17.3WECh. 17.2 - Prob. 3PPACh. 17.2 - Prob. 3PPBCh. 17.2 - Prob. 3PPCCh. 17.2 - Prob. 17.2.1SRCh. 17.2 - Prob. 17.2.2SRCh. 17.2 - Prob. 17.2.3SRCh. 17.2 - Prob. 17.2.4SRCh. 17.3 - Calculate the pH in the titration of 50.0 mL of...Ch. 17.3 - For the titration of 10.0 mL of 0.15 M acetic acid...Ch. 17.3 - Prob. 4PPBCh. 17.3 - Prob. 4PPCCh. 17.3 - Prob. 17.5WECh. 17.3 - Prob. 5PPACh. 17.3 - Prob. 5PPBCh. 17.3 - Which of the graphs [(i)(iv)] best represents the...Ch. 17.3 - Prob. 17.6WECh. 17.3 - Prob. 6PPACh. 17.3 - Prob. 6PPBCh. 17.3 - Prob. 6PPCCh. 17.3 - Prob. 17.3.1SRCh. 17.3 - Prob. 17.3.2SRCh. 17.3 - Prob. 17.3.3SRCh. 17.4 - Calculate the solubility of copper(II) hydroxide...Ch. 17.4 - Calculate the molar solubility and the solubility...Ch. 17.4 - Calculate the molar solubility and the solubility...Ch. 17.4 - Prob. 7PPCCh. 17.4 - Prob. 17.8WECh. 17.4 - Prob. 8PPACh. 17.4 - Prob. 8PPBCh. 17.4 - Prob. 8PPCCh. 17.4 - Prob. 17.9WECh. 17.4 - Predict whether a precipitate will form from each...Ch. 17.4 - Prob. 9PPBCh. 17.4 - Prob. 9PPCCh. 17.4 - Prob. 17.4.1SRCh. 17.4 - Prob. 17.4.2SRCh. 17.4 - Prob. 17.4.3SRCh. 17.5 - Prob. 17.10WECh. 17.5 - Calculate the molar solubility of AgI in (a) pure...Ch. 17.5 - Arrange the following salts in order of increasing...Ch. 17.5 - Prob. 17.11WECh. 17.5 - Determine if the following compounds are more...Ch. 17.5 - Prob. 11PPBCh. 17.5 - Prob. 11PPCCh. 17.5 - Prob. 17.12WECh. 17.5 - Prob. 12PPACh. 17.5 - Prob. 12PPBCh. 17.5 - Beginning with a saturated solution of AgCl, which...Ch. 17.5 - Prob. 17.5.1SRCh. 17.5 - Prob. 17.5.2SRCh. 17.6 - Prob. 17.13WECh. 17.6 - Prob. 13PPACh. 17.6 - Prob. 13PPBCh. 17.6 - Prob. 13PPCCh. 17.6 - Prob. 17.6.1SRCh. 17.6 - Prob. 17.6.2SRCh. 17 - Use Le Chteliers principle to explain how the...Ch. 17 - Describe the effect on pH (increase, decrease, or...Ch. 17 - Prob. 17.3QPCh. 17 - Prob. 17.4QPCh. 17 - Determine the pH of (a) a 0.40 M CH3COOH solution,...Ch. 17 - Determine the pH of (a) a 0.20 M NH3 solution, and...Ch. 17 - Which pair of substances can be dissolved together...Ch. 17 - Prob. 17.2VCCh. 17 - Prob. 17.3VCCh. 17 - Prob. 17.4VCCh. 17 - Prob. 17.7QPCh. 17 - Prob. 17.8QPCh. 17 - Calculate the pH of the buffer system made up of...Ch. 17 - Calculate the pH of the following two buffer...Ch. 17 - Prob. 17.11QPCh. 17 - Prob. 17.12QPCh. 17 - Prob. 17.13QPCh. 17 - The pH of blood plasma is 7.40. Assuming the...Ch. 17 - Calculate the pH of the 0.20 M NH3/0.20 M NH4Cl...Ch. 17 - Calculate the pH of 1.00 L of the buffer 1.00 M...Ch. 17 - Prob. 17.17QPCh. 17 - Prob. 17.18QPCh. 17 - Prob. 17.19QPCh. 17 - Prob. 17.20QPCh. 17 - The diagrams [(a)(d)] contain one or more of the...Ch. 17 - Prob. 17.22QPCh. 17 - Prob. 17.23QPCh. 17 - Prob. 17.24QPCh. 17 - Prob. 17.25QPCh. 17 - The amount of indicator used in an acid-base...Ch. 17 - Prob. 17.27QPCh. 17 - Prob. 17.28QPCh. 17 - Prob. 17.29QPCh. 17 - Prob. 17.30QPCh. 17 - Prob. 17.31QPCh. 17 - Prob. 17.32QPCh. 17 - Prob. 17.33QPCh. 17 - Prob. 17.34QPCh. 17 - A 25.0-,L solution of 0n100 M CH3COOH is titrated...Ch. 17 - A 10.0-mL solution of 0.300 M NH3 is titratee with...Ch. 17 - Prob. 17.37QPCh. 17 - Prob. 17.38QPCh. 17 - Prob. 17.39QPCh. 17 - Prob. 17.40QPCh. 17 - Diagrams (a) through (d) represent solutions at...Ch. 17 - Prob. 17.42QPCh. 17 - Prob. 17.43QPCh. 17 - Prob. 17.44QPCh. 17 - Write balanced equations and solubility product...Ch. 17 - Prob. 17.46QPCh. 17 - Prob. 17.47QPCh. 17 - Prob. 17.48QPCh. 17 - Prob. 17.49QPCh. 17 - Prob. 17.50QPCh. 17 - Prob. 17.51QPCh. 17 - The solubility of an ionic compound MX (molar mass...Ch. 17 - Prob. 17.53QPCh. 17 - Prob. 17.54QPCh. 17 - Prob. 17.55QPCh. 17 - Prob. 17.56QPCh. 17 - Prob. 17.57QPCh. 17 - A volume of 75 mL of 0.060 M NaF is mixed with 25...Ch. 17 - Prob. 17.59QPCh. 17 - Prob. 17.60QPCh. 17 - Prob. 17.5VCCh. 17 - Prob. 17.6VCCh. 17 - Prob. 17.7VCCh. 17 - How would the concentration of silver ion in the...Ch. 17 - Prob. 17.61QPCh. 17 - Prob. 17.62QPCh. 17 - Prob. 17.63QPCh. 17 - Prob. 17.64QPCh. 17 - The solubility product of PbBr2 is 8.9 106....Ch. 17 - Prob. 17.66QPCh. 17 - Calculate the molar solubility of BaSO4 in (a)...Ch. 17 - Prob. 17.68QPCh. 17 - Prob. 17.69QPCh. 17 - Prob. 17.70QPCh. 17 - Prob. 17.71QPCh. 17 - Prob. 17.72QPCh. 17 - Calculate the concentrations of Cd2+, Cd(CN)42 ,...Ch. 17 - Prob. 17.74QPCh. 17 - Prob. 17.75QPCh. 17 - (a) Calculate the molar solubility of...Ch. 17 - Prob. 17.77QPCh. 17 - Prob. 17.78QPCh. 17 - Prob. 17.79QPCh. 17 - Prob. 17.80QPCh. 17 - Prob. 17.81QPCh. 17 - Prob. 17.82QPCh. 17 - Prob. 17.83QPCh. 17 - Prob. 17.84QPCh. 17 - In a group 1 analysis, a student adds HCl acid to...Ch. 17 - Prob. 17.86QPCh. 17 - Prob. 17.87QPCh. 17 - Sketch the titration curve of a weak acid with a...Ch. 17 - Prob. 17.89QPCh. 17 - Prob. 17.90QPCh. 17 - Prob. 17.91QPCh. 17 - Tris [tris(hydroxymethyl)aminomethane] is a common...Ch. 17 - Prob. 17.93QPCh. 17 - Prob. 17.94QPCh. 17 - Prob. 17.95QPCh. 17 - Prob. 17.96QPCh. 17 - Prob. 17.97QPCh. 17 - Find the approximate pH range suitable for...Ch. 17 - Prob. 17.99QPCh. 17 - Prob. 17.100QPCh. 17 - Prob. 17.101QPCh. 17 - Prob. 17.102QPCh. 17 - Barium is a toxic substance that can seriously...Ch. 17 - The pKa of phenolphthalein is 9.10. Over what pH...Ch. 17 - Prob. 17.105QPCh. 17 - Prob. 17.106QPCh. 17 - Prob. 17.107QPCh. 17 - The molar mass of a certain metal carbonate, MCO3,...Ch. 17 - Prob. 17.109QPCh. 17 - Prob. 17.110QPCh. 17 - Describe how you would prepare a 1 -L 0.20 M...Ch. 17 - Phenolphthalein is the common indicator for the...Ch. 17 - Prob. 17.113QPCh. 17 - Prob. 17.114QPCh. 17 - Prob. 17.115QPCh. 17 - Prob. 17.116QPCh. 17 - Prob. 17.117QPCh. 17 - Prob. 17.118QPCh. 17 - When lemon juice is added to tea, the color...Ch. 17 - How many milliliters of 1.0 M NaOH must be added...Ch. 17 - Prob. 17.121QPCh. 17 - Prob. 17.122QPCh. 17 - Prob. 17.123QPCh. 17 - Prob. 17.124QPCh. 17 - Calcium oxalate is a major component of kidney...Ch. 17 - Water containing Ca2+ and Mg2+ ions is called hard...Ch. 17 - Prob. 17.127QPCh. 17 - Prob. 17.128QPCh. 17 - Prob. 17.129QPCh. 17 - (a) Referring to Figure 17.4, describe how you...Ch. 17 - Prob. 17.131QPCh. 17 - Prob. 17.132QPCh. 17 - Prob. 17.133QPCh. 17 - Prob. 17.134QPCh. 17 - Prob. 17.135QPCh. 17 - Prob. 17.136QPCh. 17 - A sample of 0.96 L of HCl gas at 372 mmHg and 22C...Ch. 17 - Prob. 17.138QPCh. 17 - The solutions (a) through (f) represent various...Ch. 17 - Prob. 17.140QPCh. 17 - Prob. 17.141QPCh. 17 - Which of the acids in Table 16.5 (page 732) can be...Ch. 17 - Prob. 17.2KSPCh. 17 - Prob. 17.3KSPCh. 17 - How much sodium fluoride must be dissolved in 250...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- (a) Draw a Lewis dot and cross structure (including any lone pairs) for a NBr3 molecule and determine the shape of the molecule and number of valence electrons. (b) Six ammonia ligands form a complex ion with Co²+. What is the overall charge of the complex ion? Write the formula for the complex ion. What is the coordination number of the complex ion? Explain how ammonia ligands form a complex ion with Co²+? What is the geometry of the complex ion? Would you expect the complex to be coloured? Explain why? i. ii. iii. iv. V. vi.arrow_forwardThe formation of a complex between cobalt (III) cation and six ammonia (NH3) ligands is very favorable (K₁ = 2.3 x 10³3). Given an initial cobalt concentration of 0.0235 M and an initial ammonia concentration of 0.206 M, what will be the concentration of free cobalt ion (Co³+) at equilibrium? 1.4 x 10-28 M 4.3 x 10-34 M 3.3 x 10-41 M 1.2 x 10-27 M 1.6 x 10-34 Marrow_forwardCalculate the Co2+ equilibrium concentration when 0.100 mole of [Co(NH3)6](NO3)2 is added to a solution with 0.025 M NH3. Assume the volume is 1.00 L.arrow_forward
- Cobalt(II) complex ion solution: [Co(H2O)6]+2(aq) + 4Cl-(aq) [CoCl4]-2(aq) + 6H2O(l) Pink Blue 1). When silver nitrate is added the blue color becomes pink. Why is that ? 2. When heat is added , in which direction the equilibrium will shift ? Is this reaction exothermic or endothermic ? 3.What happens when the temperature is lowered in the ice bath ?arrow_forwardFor the aqueous complex at Fe (CN)6]4-complex Kf= 1.0 x 10^35 Suppose equal volumes of 0.0062M Fe(NO2) solution and 0.10M KCN solution are mixed. Calculate the equilibrium molarity of aqueous Fe^2+ ion. Round your answer to 2 significant digits.arrow_forwardA complex M(SCN)2 can be produced from an aqueous equilibrium in which the M2+ ion is mixed with thiocyanate ion. A solution containing initial concentrations of M2+ and SCN− are 0.000100 M and 0.000250 M respectively has an equilibrium concentration of M(SCN)2 of 2.00 × 10−5 M.What are the equilibrium concentrations of the two starting ions and what is the value of the equilibrium constant?[M2+] = [SCN−] = Kc =arrow_forward
- Consider the insoluble compound cobalt(II) carbonate , CoCO3 . The cobalt(II) ion also forms a complex with ammonia . Write a balanced net ionic equation to show why the solubility of CoCO3 (s) increases in the presence of ammonia and calculate the equilibrium constant for this reaction.For Co(NH3)62+ , Kf = 7.7×104 . Be sure to specify states such as (aq) or (s).arrow_forwardConsider the insoluble compound cobalt(II) carbonate , CoCO3 . The cobalt(II) ion also forms a complex with ammonia . Write a balanced net ionic equation to show why the solubility of CoCO3 (s) increases in the presence of ammonia and calculate the equilibrium constant for this reaction.For Co(NH3)62+ , Kf = 7.7×104 . Be sure to specify states such as (aq) or (s). + + K =arrow_forwardConsider the insoluble compound cobalt(II) carbonate, CoCO3. The cobalt(II) ion also forms a complex with ammonia. Write a balanced net ionic equation to show why the solubility of CoCO3 (s) increases in the presence of ammonia and calculate the equilibrium constant for this reaction. For Co(NH3)2+, K = 7.7x104. Be sure to specify states such as (aq) or (s). K= Submit Answer Retry Entire Group 3 more group attempts remainingarrow_forward
- Explain why the species Fe(H2O)6 2+ is a complex ion.arrow_forwardWrite the net ionic equation for the [CoCl4]?- ion/[Co(H2O)6J²+ ion equilibrium.arrow_forwardIn an aqueous chloride solution cobalt(II) exists in equilibrium with the complex ion CoCL42. Co²+ (aq) is pink and CoC14²(aq) is blue. At low temperature the pink color predominates. At high temperature the blue color is strong. If we represent the equilibrium as: CoC14²(aq) Co²+ (aq) + 4Cl¯ (aq) We can conclude that: 1. This reaction is O exothermic. O endothermic. O neutral. O More information is needed to answer this question. 2. When the temperature is decreased the equilibrium constant, K: O increases. O decreases. O remains the same. O More information is needed to answer this question. 3. When the temperature is decreased the equilibrium concentration of CoC₁4²: O increases. O decreases. O remains the same. O More information is needed to answer this question.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning