Mylab Math With Pearson Etext -- 18 Week Standalone Access Card -- For Basic Technical Mathematics With Calculus
11th Edition
ISBN: 9780135902912
Author: Allyn J. Washington
Publisher: PEARSON
expand_more
expand_more
Solutions are available for other sections.
Question
Chapter 17.3, Problem
To determine
The rate of interest that will provide the value between $11,000 and $11,500.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please could you provide a step by step solutions to this question and explain every step.
Could you please help me with question 2bii. If possible could you explain how you found the bounds of the integral by using a graph of the region of integration. Thanks
Let A be a vector space with basis 1, a, b. Which (if any) of the following rules
turn A into an algebra? (You may assume that 1 is a unit.)
(i) a² = a, b² = ab = ba = 0.
(ii) a²=b, b² = ab = ba = 0.
(iii) a²=b, b² = b, ab = ba = 0.
Chapter 17 Solutions
Mylab Math With Pearson Etext -- 18 Week Standalone Access Card -- For Basic Technical Mathematics With Calculus
Ch. 17.1 - For −6 < 3, determine the inequality if
1. 8 is...Ch. 17.1 - Prob. 2PECh. 17.1 - For the inequality −6 < 3, state the inequality...Ch. 17.1 - Prob. 4PECh. 17.1 - Prob. 5PECh. 17.1 - In Exercises 1–4, make the given changes in the...Ch. 17.1 - Prob. 2ECh. 17.1 - Prob. 3ECh. 17.1 - Prob. 4ECh. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...
Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - Prob. 22ECh. 17.1 - Prob. 23ECh. 17.1 - Prob. 24ECh. 17.1 - Prob. 25ECh. 17.1 - Prob. 26ECh. 17.1 - Prob. 27ECh. 17.1 - Prob. 28ECh. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 45–48, answer the given questions...Ch. 17.1 - In Exercises 45–48, answer the given questions...Ch. 17.1 - In Exercises 45–48, answer the given questions...Ch. 17.1 - In Exercises 45–48, answer the given questions...Ch. 17.1 - In Exercises 49–52, solve the given problems.
49....Ch. 17.1 - In Exercises 49–52, solve the given problems.
50....Ch. 17.1 - In Exercises 49–52, solve the given...Ch. 17.1 - In Exercises 49–52, solve the given problems.
52....Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - Prob. 62ECh. 17.2 - Prob. 1PECh. 17.2 - Prob. 2PECh. 17.2 - Prob. 3PECh. 17.2 - Prob. 4PECh. 17.2 - Prob. 1ECh. 17.2 - Prob. 2ECh. 17.2 - Prob. 3ECh. 17.2 - Prob. 4ECh. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - Prob. 26ECh. 17.2 - Prob. 27ECh. 17.2 - Prob. 28ECh. 17.2 - Prob. 29ECh. 17.2 - Prob. 30ECh. 17.2 - Prob. 31ECh. 17.2 - Prob. 32ECh. 17.2 - Prob. 33ECh. 17.2 - Prob. 34ECh. 17.2 - Prob. 35ECh. 17.2 - Prob. 36ECh. 17.2 - Prob. 37ECh. 17.2 - Prob. 38ECh. 17.2 - In Exercises 39–60, solve the given problems by...Ch. 17.2 - In Exercises 39–60, solve the given problems by...Ch. 17.2 - In Exercises 39–60, solve the given problems by...Ch. 17.2 - Prob. 42ECh. 17.2 - Prob. 43ECh. 17.2 - Prob. 44ECh. 17.2 - Prob. 45ECh. 17.2 - Prob. 46ECh. 17.2 - Prob. 47ECh. 17.2 - Prob. 48ECh. 17.2 - In Exercises 39–60, solve the given problems by...Ch. 17.2 - Prob. 50ECh. 17.2 - Prob. 51ECh. 17.2 - Prob. 52ECh. 17.2 - Prob. 53ECh. 17.2 - Prob. 54ECh. 17.2 - Prob. 55ECh. 17.2 - Prob. 56ECh. 17.2 - Prob. 57ECh. 17.2 - Prob. 58ECh. 17.2 - Prob. 59ECh. 17.2 - Prob. 60ECh. 17.3 - Prob. 1PECh. 17.3 - Prob. 2PECh. 17.3 - Prob. 1ECh. 17.3 - Prob. 2ECh. 17.3 - Prob. 3ECh. 17.3 - Prob. 4ECh. 17.3 - Prob. 5ECh. 17.3 - Prob. 6ECh. 17.3 - Prob. 7ECh. 17.3 - Prob. 8ECh. 17.3 - Prob. 9ECh. 17.3 - Prob. 10ECh. 17.3 - Prob. 11ECh. 17.3 - Prob. 12ECh. 17.3 - Prob. 13ECh. 17.3 - Prob. 14ECh. 17.3 - Prob. 15ECh. 17.3 - Prob. 16ECh. 17.3 - Prob. 17ECh. 17.3 - Prob. 18ECh. 17.3 - Prob. 19ECh. 17.3 - Prob. 20ECh. 17.3 - Prob. 21ECh. 17.3 - Prob. 22ECh. 17.3 - Prob. 23ECh. 17.3 - Prob. 24ECh. 17.3 - Prob. 25ECh. 17.3 - Prob. 26ECh. 17.3 - Prob. 27ECh. 17.3 - Prob. 28ECh. 17.3 - Prob. 29ECh. 17.3 - Prob. 30ECh. 17.3 - Prob. 31ECh. 17.3 - Prob. 32ECh. 17.3 - Prob. 33ECh. 17.3 - Prob. 34ECh. 17.3 - Prob. 35ECh. 17.3 - Prob. 36ECh. 17.3 - Prob. 37ECh. 17.3 - Prob. 38ECh. 17.3 - Prob. 39ECh. 17.3 - Prob. 40ECh. 17.3 - Prob. 41ECh. 17.3 - Prob. 42ECh. 17.3 - Prob. 43ECh. 17.3 - Prob. 44ECh. 17.3 - Prob. 45ECh. 17.3 - Prob. 46ECh. 17.3 - Prob. 47ECh. 17.3 - Prob. 48ECh. 17.3 - Prob. 49ECh. 17.3 - Prob. 50ECh. 17.3 - Prob. 51ECh. 17.3 - Prob. 52ECh. 17.3 - Prob. 53ECh. 17.3 - Prob. 54ECh. 17.3 - Prob. 55ECh. 17.3 - Prob. 56ECh. 17.3 - In Exercises 51–62, answer the given questions by...Ch. 17.3 - Prob. 58ECh. 17.3 - Prob. 59ECh. 17.3 - Prob. 60ECh. 17.3 - Prob. 61ECh. 17.3 - Prob. 62ECh. 17.4 - Prob. 1PECh. 17.4 - Prob. 2PECh. 17.4 - Prob. 1ECh. 17.4 - Prob. 2ECh. 17.4 - Prob. 3ECh. 17.4 - Prob. 4ECh. 17.4 - Prob. 5ECh. 17.4 - Prob. 6ECh. 17.4 - Prob. 7ECh. 17.4 - Prob. 8ECh. 17.4 - Prob. 9ECh. 17.4 - Prob. 10ECh. 17.4 - Prob. 11ECh. 17.4 - Prob. 12ECh. 17.4 - Prob. 13ECh. 17.4 - Prob. 14ECh. 17.4 - Prob. 15ECh. 17.4 - Prob. 16ECh. 17.4 - Prob. 17ECh. 17.4 - Prob. 18ECh. 17.4 - Prob. 19ECh. 17.4 - Prob. 20ECh. 17.4 - Prob. 21ECh. 17.4 - Prob. 22ECh. 17.4 - Prob. 23ECh. 17.4 - Prob. 24ECh. 17.4 - Prob. 25ECh. 17.4 - Prob. 26ECh. 17.4 - Prob. 27ECh. 17.4 - Prob. 28ECh. 17.4 - Prob. 29ECh. 17.4 - Prob. 30ECh. 17.4 - Prob. 31ECh. 17.4 - Prob. 32ECh. 17.4 - Prob. 33ECh. 17.4 - Prob. 34ECh. 17.4 - Prob. 35ECh. 17.4 - Prob. 36ECh. 17.4 - Prob. 37ECh. 17.4 - Prob. 38ECh. 17.4 - Prob. 39ECh. 17.4 - Prob. 40ECh. 17.4 - Prob. 41ECh. 17.4 - Prob. 42ECh. 17.4 - Prob. 43ECh. 17.4 - Prob. 44ECh. 17.4 - Prob. 45ECh. 17.4 - Prob. 46ECh. 17.4 - Prob. 47ECh. 17.4 - Prob. 48ECh. 17.5 - Prob. 1PECh. 17.5 - Prob. 2PECh. 17.5 - Prob. 1ECh. 17.5 - Prob. 2ECh. 17.5 - Prob. 3ECh. 17.5 - Prob. 4ECh. 17.5 - Prob. 5ECh. 17.5 - Prob. 6ECh. 17.5 - Prob. 7ECh. 17.5 - Prob. 8ECh. 17.5 - Prob. 9ECh. 17.5 - Prob. 10ECh. 17.5 - Prob. 11ECh. 17.5 - Prob. 12ECh. 17.5 - Prob. 13ECh. 17.5 - Prob. 14ECh. 17.5 - Prob. 15ECh. 17.5 - Prob. 16ECh. 17.5 - Prob. 17ECh. 17.5 - Prob. 18ECh. 17.5 - Prob. 19ECh. 17.5 - Prob. 20ECh. 17.5 - Prob. 21ECh. 17.5 - Prob. 22ECh. 17.5 - Prob. 23ECh. 17.5 - Prob. 24ECh. 17.5 - Prob. 25ECh. 17.5 - Prob. 26ECh. 17.5 - Prob. 27ECh. 17.5 - Prob. 28ECh. 17.5 - Prob. 29ECh. 17.5 - Prob. 30ECh. 17.5 - Prob. 31ECh. 17.5 - Prob. 32ECh. 17.5 - Prob. 33ECh. 17.5 - Prob. 34ECh. 17.5 - Prob. 35ECh. 17.5 - Prob. 36ECh. 17.5 - Prob. 37ECh. 17.5 - Prob. 38ECh. 17.5 - Prob. 39ECh. 17.5 - Prob. 40ECh. 17.5 - Prob. 41ECh. 17.5 - Prob. 42ECh. 17.5 - Prob. 43ECh. 17.5 - Prob. 44ECh. 17.5 - Prob. 45ECh. 17.5 - Prob. 46ECh. 17.5 - Prob. 47ECh. 17.5 - Prob. 48ECh. 17.5 - Prob. 49ECh. 17.5 - Prob. 50ECh. 17.5 - Prob. 51ECh. 17.5 - Prob. 52ECh. 17.5 - Prob. 53ECh. 17.5 - Prob. 54ECh. 17.5 - Prob. 55ECh. 17.5 - Prob. 56ECh. 17.6 - Prob. 1PECh. 17.6 - Prob. 2PECh. 17.6 - Prob. 1ECh. 17.6 - Prob. 2ECh. 17.6 - Prob. 3ECh. 17.6 - Prob. 4ECh. 17.6 - Prob. 5ECh. 17.6 - Prob. 6ECh. 17.6 - Prob. 7ECh. 17.6 - Prob. 8ECh. 17.6 - Prob. 9ECh. 17.6 - Prob. 10ECh. 17.6 - Prob. 11ECh. 17.6 - Prob. 12ECh. 17.6 - Prob. 13ECh. 17.6 - Prob. 14ECh. 17.6 - Prob. 15ECh. 17.6 - Prob. 16ECh. 17.6 - Prob. 17ECh. 17.6 - Prob. 18ECh. 17.6 - Prob. 19ECh. 17.6 - In Exercises 17–22, solve the given linear...Ch. 17.6 - Prob. 21ECh. 17.6 - Prob. 22ECh. 17 - Prob. 1RECh. 17 - Prob. 2RECh. 17 - Prob. 3RECh. 17 - Prob. 4RECh. 17 - Prob. 5RECh. 17 - Prob. 6RECh. 17 - Prob. 7RECh. 17 - Prob. 8RECh. 17 - Prob. 9RECh. 17 - Prob. 10RECh. 17 - Prob. 11RECh. 17 - Prob. 12RECh. 17 - Prob. 13RECh. 17 - Prob. 14RECh. 17 - Prob. 15RECh. 17 - Prob. 16RECh. 17 - Prob. 17RECh. 17 - Prob. 18RECh. 17 - Prob. 19RECh. 17 - Prob. 20RECh. 17 - Prob. 21RECh. 17 - Prob. 22RECh. 17 - Prob. 23RECh. 17 - Prob. 24RECh. 17 - Prob. 25RECh. 17 - Prob. 26RECh. 17 - Prob. 27RECh. 17 - Prob. 28RECh. 17 - Prob. 29RECh. 17 - Prob. 30RECh. 17 - Prob. 31RECh. 17 - Prob. 32RECh. 17 - Prob. 33RECh. 17 - Prob. 34RECh. 17 - Prob. 35RECh. 17 - Prob. 36RECh. 17 - Prob. 37RECh. 17 - Prob. 38RECh. 17 - Prob. 39RECh. 17 - Prob. 40RECh. 17 - Prob. 41RECh. 17 - Prob. 42RECh. 17 - Prob. 43RECh. 17 - Prob. 44RECh. 17 - Prob. 45RECh. 17 - Prob. 46RECh. 17 - Prob. 47RECh. 17 - Prob. 48RECh. 17 - Prob. 49RECh. 17 - Prob. 50RECh. 17 - Prob. 51RECh. 17 - Prob. 52RECh. 17 - Prob. 53RECh. 17 - Prob. 54RECh. 17 - Prob. 55RECh. 17 - Prob. 56RECh. 17 - Prob. 57RECh. 17 - Prob. 58RECh. 17 - Prob. 59RECh. 17 - Prob. 60RECh. 17 - Prob. 61RECh. 17 - Prob. 62RECh. 17 - Prob. 63RECh. 17 - Prob. 64RECh. 17 - Prob. 65RECh. 17 - Prob. 66RECh. 17 - Prob. 67RECh. 17 - Prob. 68RECh. 17 - Prob. 69RECh. 17 - Prob. 70RECh. 17 - Prob. 71RECh. 17 - Prob. 72RECh. 17 - Prob. 73RECh. 17 - Prob. 74RECh. 17 - Prob. 75RECh. 17 - Prob. 76RECh. 17 - Prob. 77RECh. 17 - Prob. 78RECh. 17 - Prob. 79RECh. 17 - Prob. 80RECh. 17 - Prob. 81RECh. 17 - Prob. 82RECh. 17 - Prob. 83RECh. 17 - Prob. 84RECh. 17 - Prob. 85RECh. 17 - Prob. 86RECh. 17 - Prob. 87RECh. 17 - Prob. 88RECh. 17 - Prob. 89RECh. 17 - Prob. 90RECh. 17 - Prob. 91RECh. 17 - Prob. 1PTCh. 17 - Prob. 2PTCh. 17 - Prob. 3PTCh. 17 - Prob. 4PTCh. 17 - Prob. 5PTCh. 17 - Prob. 6PTCh. 17 - Prob. 7PTCh. 17 - Prob. 8PTCh. 17 - Prob. 9PTCh. 17 - Prob. 10PTCh. 17 - Prob. 11PTCh. 17 - Prob. 12PTCh. 17 - Prob. 13PTCh. 17 - Prob. 14PT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvotearrow_forward= 1. Show (a) Let G = Z/nZ be a cyclic group, so G = {1, 9, 92,...,g" } with g": that the group algebra KG has a presentation KG = K(X)/(X” — 1). (b) Let A = K[X] be the algebra of polynomials in X. Let V be the A-module with vector space K2 and where the action of X is given by the matrix Compute End(V) in the cases (i) x = p, (ii) xμl. (67) · (c) If M and N are submodules of a module L, prove that there is an isomorphism M/MON (M+N)/N. (The Second Isomorphism Theorem for modules.) You may assume that MON is a submodule of M, M + N is a submodule of L and the First Isomorphism Theorem for modules.arrow_forward(a) Define the notion of an ideal I in an algebra A. Define the product on the quotient algebra A/I, and show that it is well-defined. (b) If I is an ideal in A and S is a subalgebra of A, show that S + I is a subalgebra of A and that SnI is an ideal in S. (c) Let A be the subset of M3 (K) given by matrices of the form a b 0 a 0 00 d Show that A is a subalgebra of M3(K). Ꮖ Compute the ideal I of A generated by the element and show that A/I K as algebras, where 0 1 0 x = 0 0 0 001arrow_forward
- (a) Let HI be the algebra of quaternions. Write out the multiplication table for 1, i, j, k. Define the notion of a pure quaternion, and the absolute value of a quaternion. Show that if p is a pure quaternion, then p² = -|p|². (b) Define the notion of an (associative) algebra. (c) Let A be a vector space with basis 1, a, b. Which (if any) of the following rules turn A into an algebra? (You may assume that 1 is a unit.) (i) a² = a, b²=ab = ba 0. (ii) a² (iii) a² = b, b² = abba = 0. = b, b² = b, ab = ba = 0. (d) Let u1, 2 and 3 be in the Temperley-Lieb algebra TL4(8). ገ 12 13 Compute (u3+ Augu2)² where A EK and hence find a non-zero x € TL4 (8) such that ² = 0.arrow_forwardQ1: Solve the system x + x = t², x(0) = (9)arrow_forwardCo Given show that Solution Take home Су-15 1994 +19 09/2 4 =a log суто - 1092 ж = a-1 2+1+8 AI | SHOT ON S4 INFINIX CAMERAarrow_forward
- Between the function 3 (4)=x-x-1 Solve inside the interval [1,2]. then find the approximate Solution the root within using the bisection of the error = 10² method.arrow_forwardCould you explain how the inequalities u in (0,1), we have 0 ≤ X ≤u-Y for any 0 ≤Y<u and u in (1,2), we either have 0 ≤ X ≤u-Y for any u - 1 < Y<1, or 0≤x≤1 for any 0 ≤Y≤u - 1 are obtained please. They're in the solutions but don't understand how they were derived.arrow_forwardE10) Perform four iterations of the Jacobi method for solving the following system of equations. 2 -1 -0 -0 XI 2 0 0 -1 2 X3 0 0 2 X4 With x(0) (0.5, 0.5, 0.5, 0.5). Here x = (1, 1, 1, 1)". How good x (5) as an approximation to x?arrow_forward
- by (2) Gauss saidel - - method find (2) و X2 for the sestem X1 + 2x2=-4 2x1 + 2x2 = 1 Such thef (0) x2=-2arrow_forwardCan you please explain how to find the bounds of the integrals for X and Y and also explain how to find the inequalites that satisfy X and Y. I've looked at the solutions but its not clear to me on how the inequalities and bounds of the integral were obtained. If possible could you explain how to find the bounds of the integrals by sketching a graph with the region of integration. Thanksarrow_forwardax+b proof that se = - è (e" -1)" ë naxarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY
Optimization Problems in Calculus; Author: Professor Dave Explains;https://www.youtube.com/watch?v=q1U6AmIa_uQ;License: Standard YouTube License, CC-BY
Introduction to Optimization; Author: Math with Dr. Claire;https://www.youtube.com/watch?v=YLzgYm2tN8E;License: Standard YouTube License, CC-BY