CALCULUS 4E (HC) W/ ACHIEVE ACCESS
4th Edition
ISBN: 9781319379421
Author: Rogawski
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 17.2, Problem 12E
To determine
To evaluate:
using Stokes’ Theorem
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
please help me
4. Consider the vector function r(z, y) (r, y, r2 +2y").
(a) Re-write this vector function as surface function in the form f(1,y).
(b) Describe and draw the shape of the surface function using contour lines and algebraic analysis
as needed. Explain the contour shapes in all three orthogonal directions and explain and label
all intercepts as needed.
(c) Consider the contour of the surface function on the plane z=
for this contour in vector form.
0. Write the general equation
The vector v = <a, 1, -1>, is tangent to the surface x2 + 2y3 - 3z2 = 3 at the point (2, 1, 1).
Find a.
Chapter 17 Solutions
CALCULUS 4E (HC) W/ ACHIEVE ACCESS
Ch. 17.1 - Prob. 1PQCh. 17.1 - Prob. 2PQCh. 17.1 - Prob. 3PQCh. 17.1 - Prob. 4PQCh. 17.1 - Prob. 5PQCh. 17.1 - Prob. 1ECh. 17.1 - Prob. 2ECh. 17.1 - Prob. 3ECh. 17.1 - Prob. 4ECh. 17.1 - Prob. 5E
Ch. 17.1 - Prob. 6ECh. 17.1 - Prob. 7ECh. 17.1 - Prob. 8ECh. 17.1 - Prob. 9ECh. 17.1 - Prob. 10ECh. 17.1 - Prob. 11ECh. 17.1 - Prob. 12ECh. 17.1 - Prob. 13ECh. 17.1 - Prob. 14ECh. 17.1 - Prob. 15ECh. 17.1 - Prob. 16ECh. 17.1 - Prob. 17ECh. 17.1 - Prob. 18ECh. 17.1 - Prob. 19ECh. 17.1 - Prob. 20ECh. 17.1 - Prob. 21ECh. 17.1 - Prob. 22ECh. 17.1 - Prob. 23ECh. 17.1 - Prob. 24ECh. 17.1 - Prob. 25ECh. 17.1 - Prob. 26ECh. 17.1 - Prob. 27ECh. 17.1 - Prob. 28ECh. 17.1 - Prob. 29ECh. 17.1 - Prob. 30ECh. 17.1 - Prob. 31ECh. 17.1 - Prob. 32ECh. 17.1 - Prob. 33ECh. 17.1 - Prob. 34ECh. 17.1 - Prob. 35ECh. 17.1 - Prob. 36ECh. 17.1 - Prob. 37ECh. 17.1 - Prob. 38ECh. 17.1 - Prob. 39ECh. 17.1 - Prob. 40ECh. 17.1 - Prob. 41ECh. 17.1 - Prob. 42ECh. 17.1 - Prob. 43ECh. 17.1 - Prob. 44ECh. 17.1 - Prob. 45ECh. 17.1 - Prob. 46ECh. 17.1 - Prob. 47ECh. 17.1 - Prob. 48ECh. 17.1 - Prob. 49ECh. 17.1 - Prob. 50ECh. 17.1 - Prob. 51ECh. 17.2 - Prob. 1PQCh. 17.2 - Prob. 2PQCh. 17.2 - Prob. 3PQCh. 17.2 - Prob. 4PQCh. 17.2 - Prob. 5PQCh. 17.2 - Prob. 1ECh. 17.2 - Prob. 2ECh. 17.2 - Prob. 3ECh. 17.2 - Prob. 4ECh. 17.2 - Prob. 5ECh. 17.2 - Prob. 6ECh. 17.2 - Prob. 7ECh. 17.2 - Prob. 8ECh. 17.2 - Prob. 9ECh. 17.2 - Prob. 10ECh. 17.2 - Prob. 11ECh. 17.2 - Prob. 12ECh. 17.2 - Prob. 13ECh. 17.2 - Prob. 14ECh. 17.2 - Prob. 15ECh. 17.2 - Prob. 16ECh. 17.2 - Prob. 17ECh. 17.2 - Prob. 18ECh. 17.2 - Prob. 19ECh. 17.2 - Prob. 20ECh. 17.2 - Prob. 21ECh. 17.2 - Prob. 22ECh. 17.2 - Prob. 23ECh. 17.2 - Prob. 24ECh. 17.2 - Prob. 25ECh. 17.2 - Prob. 26ECh. 17.2 - Prob. 27ECh. 17.2 - Prob. 28ECh. 17.2 - Prob. 29ECh. 17.2 - Prob. 30ECh. 17.2 - Prob. 31ECh. 17.2 - Prob. 32ECh. 17.2 - Prob. 33ECh. 17.2 - Prob. 34ECh. 17.2 - Prob. 35ECh. 17.2 - Prob. 36ECh. 17.2 - Prob. 37ECh. 17.2 - Prob. 38ECh. 17.3 - Prob. 1PQCh. 17.3 - Prob. 2PQCh. 17.3 - Prob. 3PQCh. 17.3 - Prob. 4PQCh. 17.3 - Prob. 5PQCh. 17.3 - Prob. 1ECh. 17.3 - Prob. 2ECh. 17.3 - Prob. 3ECh. 17.3 - Prob. 4ECh. 17.3 - Prob. 5ECh. 17.3 - Prob. 6ECh. 17.3 - Prob. 7ECh. 17.3 - Prob. 8ECh. 17.3 - Prob. 9ECh. 17.3 - Prob. 10ECh. 17.3 - Prob. 11ECh. 17.3 - Prob. 12ECh. 17.3 - Prob. 13ECh. 17.3 - Prob. 14ECh. 17.3 - Prob. 15ECh. 17.3 - Prob. 16ECh. 17.3 - Prob. 17ECh. 17.3 - Prob. 18ECh. 17.3 - Prob. 19ECh. 17.3 - Prob. 20ECh. 17.3 - Prob. 21ECh. 17.3 - Prob. 22ECh. 17.3 - Prob. 23ECh. 17.3 - Prob. 24ECh. 17.3 - Prob. 25ECh. 17.3 - Prob. 26ECh. 17.3 - Prob. 27ECh. 17.3 - Prob. 28ECh. 17.3 - Prob. 29ECh. 17.3 - Prob. 30ECh. 17.3 - Prob. 31ECh. 17.3 - Prob. 32ECh. 17.3 - Prob. 33ECh. 17.3 - Prob. 34ECh. 17.3 - Prob. 35ECh. 17.3 - Prob. 36ECh. 17.3 - Prob. 37ECh. 17.3 - Prob. 38ECh. 17.3 - Prob. 39ECh. 17.3 - Prob. 40ECh. 17.3 - Prob. 41ECh. 17.3 - Prob. 42ECh. 17.3 - Prob. 43ECh. 17.3 - Prob. 44ECh. 17 - Prob. 1CRECh. 17 - Prob. 2CRECh. 17 - Prob. 3CRECh. 17 - Prob. 4CRECh. 17 - Prob. 5CRECh. 17 - Prob. 6CRECh. 17 - Prob. 7CRECh. 17 - Prob. 8CRECh. 17 - Prob. 9CRECh. 17 - Prob. 10CRECh. 17 - Prob. 11CRECh. 17 - Prob. 12CRECh. 17 - Prob. 13CRECh. 17 - Prob. 14CRECh. 17 - Prob. 15CRECh. 17 - Prob. 16CRECh. 17 - Prob. 17CRECh. 17 - Prob. 18CRECh. 17 - Prob. 19CRECh. 17 - Prob. 20CRECh. 17 - Prob. 21CRECh. 17 - Prob. 22CRECh. 17 - Prob. 23CRECh. 17 - Prob. 24CRECh. 17 - Prob. 25CRECh. 17 - Prob. 26CRECh. 17 - Prob. 27CRECh. 17 - Prob. 28CRECh. 17 - Prob. 29CRECh. 17 - Prob. 30CRECh. 17 - Prob. 31CRECh. 17 - Prob. 32CRECh. 17 - Prob. 33CRECh. 17 - Prob. 34CRECh. 17 - Prob. 35CRECh. 17 - Prob. 36CRECh. 17 - Prob. 37CRECh. 17 - Prob. 38CRECh. 17 - Prob. 39CRECh. 17 - Prob. 40CRECh. 17 - Prob. 41CRE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Consider the vector v=(1,3,0,4). Find u such that a u has the same direction as v and one-half of its length. b u has the direction opposite that of v and twice its length.arrow_forwardCalculate the curl of the vector = (2x + 3y)i + (y+z)j + (xy + 2zx)karrow_forwardc) Use Stokes' theorem to evaluate ſF dr where F = 22i+ yJ + xk and C is the triangle with vertices (2,0, 0), (0, 2,0) and (0,0, 2) with anticlockwise direction when viewed from above.arrow_forward
- (b) Use Green's theorem to calculate the circulation of F around the triangle with verticcs (2, 0), (0, 3), (–2,0) oricntcd counterclockwisc where F = (2x²+3y)i+ (2.x + 3y²)j.arrow_forward1. Find the unit normal vector to the surface z = x² + y² at the point (3, 4, 5).arrow_forwardIdentify the surface by eliminating the parameters from the vector-valued function r(u,v) = 3 cosv cosui + 3 cosv sinuj + Śsinvk a. plane b. sphere c. paraboloid d. cylinder e. ellipsoid d b a e (Darrow_forward
- Let rlu, v)= [2usin(v), 2ucos(v), 2] be a parametrization of a surface S, where 0sus2,0svs2n. Then we have O A Sisacylinder of radius 2 and the normal vector is N= [0, 0, -4u]. O B. S isa disc of radius 2 and the normal vector is N= 14u, 0, 0]. OC Sisacylinder of radius 4 and the normal vector is N= [4u, 0, 0]. O D. S isadisc of radius 4 and the normal vector is N= (0, 0, -4u).arrow_forward. What is the scalar equation of the xy plane?arrow_forwardFind both parametric and rectangular representations for the plane tangent to r(u,v)=u2i+ucos(v)j+usin(v)kr(u,v)=u2i+ucos(v)j+usin(v)k at the point P(4,−2,0)P(4,−2,0).One possible parametric representation has the form⟨4−4u⟨4−4u , , 4v⟩4v⟩(Note that parametric representations are not unique. If your first and third components look different than the ones presented here, you will need to adjust your parameters so that they do match, and then the other components should match the ones expected here as well.)The equation for this plane in rectangular coordinates has the form x+x+ y+y+ z+z+ =0arrow_forward
- Use Stokes' Theorem to evaluate ∫ C F · dr where F = (x + 5z) i + (7x + y) j + (2y − z) k and C is the curve of intersection of the plane x + 3y + z = 12 with the coordinate planes.(Assume that C is oriented counterclockwise as viewed from above.)arrow_forwardDescribe the loci zz−2z−2z+8 = 0 expressed in terms of conjugate coordinates z, z.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Basic Differentiation Rules For Derivatives; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=IvLpN1G1Ncg;License: Standard YouTube License, CC-BY