(a)
Interpretation:
The balanced equations for the following reaction in basic solution needs to be determined.
Concept introduction:
Here are the rules to
- Determine the oxidation numbers of the elements and write the oxidation and reduction half equation.
- Balance the atoms of elements other than O and H. Use H2 O to balance O, H+ to balance H, electrons to balance the charges. Equalize the number of electrons on both the half reactions and then add the half reactions.
- Add OH- to neutralize the excess protons since this is a basic medium. Add OH- to both side of the equation to balance it.

Answer to Problem 7QAP
Explanation of Solution
Determining the oxidation numbers:
The oxidation number of I in I2 and I- is 0 and -1 respectively. As the oxidation number of I is decreasing this is the reduction half reaction.
Reduction half reaction:
Oxidation half reaction:
To balance the excess O atoms on the product side we add one H2 O on the reactant side, and then we balance the excess H atom on the reactant side by adding two H+ on the product side. Finally, we balance the charge by adding two electrons to the product side of the half reaction.
Thus, the balanced oxidation half reaction:
Now, balance the charge by adding two electrons to the reactant side of the half reaction.
Thus, the balanced reduction half reaction:
Net reaction:
By adding both the half reaction, the net reaction is obtained as follows:
Basic medium:
Since the reaction takes place in basic medium the excess proton on the reactant side of the net reaction is neutralized with OH-. 2 OH- ions are added on both side of the equation to even out the charges. H+ and OH- combines to form H2 O, which is then cancelled out on both side of the net reaction.
Thus, the balanced net reaction in the basic medium will be:
Or,
(b)
Interpretation:
The balanced equations for the following reaction in basic solution needs to be determined.
Concept introduction:
Here are the rules to balance
- Determine the oxidation numbers of the elements and write the oxidation and reduction half equation.
- Balance the atoms of elements other than O and H. Use H2 O to balance O, H+ to balance H, electrons to balance the charges. Equalize the number of electrons on both the half reactions and then add the half reactions.
- Add OH- to neutralize the excess protons since this is a basic medium. Add OH- to both side of the equation to balance it.

Answer to Problem 7QAP
Explanation of Solution
Determining the oxidation numbers:
The oxidation number of Zn in Zn and Zn2+ is 0 and +2 respectively. As the oxidation number of Zn is increasing this is the oxidation half of the reaction.
Oxidation half reaction:
Reduction half reaction:
Balance the charge by adding two electrons to the product side of the half reaction.
Thus, the balanced oxidation half reaction will be:
To balance the excess O atoms on the product side we add three H2 O on the product side, and then we balance the excess H atom on the product side by adding nine H+ on the reactant side. Finally, we balance the charge by adding eight electrons to the reactant side of the half reaction.
Thus, the balanced reduction half reaction will be:
Net reaction:
Multiply the oxidation half reaction by 4, to cancel out the electrons in the net reaction. We add both the half reaction to get the net reaction.
Basic medium:
Since the reaction takes place in basic medium the excess proton on the reactant side of the net reaction is neutralized with OH-. OH- is added on both side of the equation to even out the charges. H+ and OH- combines to form H2 O, which is then cancelled out on both side of the net reaction. Thus, the balanced net reaction will be:
Or,
(c)
Interpretation:
The balanced equations for the following reaction in basic solution needs to be determined.
Concept introduction:
Here are the rules to balance redox reactions in basic medium:
- Determine the oxidation numbers of the elements and write the oxidation and reduction half equation.
- Balance the atoms of elements other than O and H. Use H2 O to balance O, H+ to balance H, electrons to balance the charges. Equalize the number of electrons on both the half reactions and then add the half reactions.
- Add OH- to neutralize the excess protons since this is a basic medium. Add OH- to both side of the equation to balance it.

Answer to Problem 7QAP
Explanation of Solution
Determining the oxidation numbers:
The oxidation number of Cl in ClO- and Cl- is +1 and -1 respectively. As the oxidation number of Cl is decreasing this is the reduction half of the reaction.
The reduction half reaction:
Oxidation half reaction:
To balance the excess O atoms on the product side we add two H2 O on the reactant side, and then we balance the excess H atom on the reactant side by adding four H+ on the product side. Finally, we balance the charge by adding three electrons to the reactant side of the half reaction.
Thus, the balanced oxidation half reaction will be:
Similarly, to balance the excess O atoms on the reactant side we add one H2 O on the product side, and then we balance the excess H atom on the product side by adding two H+ on the reactant side. Finally, we balance the charge by adding two electrons to the reactant side of the half reaction.
Thus, the balanced reduction half reaction will be:
Net reaction:
Multiply the oxidation half reaction by 2 and reduction half reaction by 3, to cancel out the electrons in the net reaction. We add both the half reaction to get the net reaction.
Basic medium:
Since the reaction takes place in basic medium the excess proton on the reactant side of the net reaction is neutralized with OH-. OH- is added on both side of the equation to even out the charges. H+ and OH- combines to form H2 O, which is then cancelled out on both side of the net reaction.
Or,
(d)
Interpretation:
The balanced equations for the following reaction in basic solution needs to be determined.
Concept introduction:
Here are the rules to balance redox reactions in basic medium:
- Determine the oxidation numbers of the elements and write the oxidation and reduction half equation.
- Balance the atoms of elements other than O and H. Use H2 O to balance O, H+ to balance H, electrons to balance the charges. Equalize the number of electrons on both the half reactions and then add the half reactions.
- Add OH- to neutralize the excess protons since this is a basic medium. Add OH- to both side of the equation to balance it.

Answer to Problem 7QAP
Explanation of Solution
Determining the oxidation numbers:
The oxidation number of K in K and K+ is 0 and +1 respectively. As the oxidation number of K is increasing this is the oxidation half of the reaction.
Oxidation half reaction:
Reduction half reaction:
Balance the charge by adding one electron to the product side of the half reaction.
Thus, the balanced oxidation half reaction will be:
To balance the excess O atoms on the reactant side we add one H2 O on the product side, and then we balance the excess H atom on the product side by adding two H+ on the reactant side. Finally, we balance the charge by adding two electrons to the reactant side of the half reaction.
Thus, the balanced reduction half reaction will be:
Net reaction:
Multiply the oxidation half reaction by 2, to cancel out the electrons in the net reaction. We add both the half reaction to get the net reaction.
Basic medium:
Since the reaction takes place in basic medium the excess proton on the reactant side of the net reaction is neutralized with OH-. OH- is added on both side of the equation to even out the charges. H+ and OH- combines to form H2 O, which is then cancelled out on both side of the net reaction.
Or,
Want to see more full solutions like this?
Chapter 17 Solutions
EBK CHEMISTRY: PRINCIPLES AND REACTIONS
- 9 7 8 C 9 8 200 190 B 5 A -197.72 9 8 7 15 4 3 0: ང་ 200 190 180 147.52 134.98 170 160 150 140 130 120 110 100 90 90 OH 10 4 3 1 2 -143.04 140. 180 170 160 150 140 130 120 110 100 90 CI 3 5 1 2 141.89 140.07 200 190 180 170 160 150 140 130 120 110 100 ៖- 90 129. 126.25 80 70 60 -60 50 40 10 125.19 -129.21 80 70 3.0 20 20 -8 60 50 10 ppm -20 40 128.31 80 80 70 60 50 40 40 -70.27 3.0 20 10 ppm 00˚0-- 77.17 30 20 20 -45.36 10 ppm -0.00 26.48 22.32 ―30.10 ―-0.00arrow_forwardAssign all the carbonsarrow_forwardC 5 4 3 CI 2 the Righ B A 5 4 3 The Lich. OH 10 4 5 3 1 LOOP- -147.52 T 77.17 -45.36 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm B -126.25 77.03 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm 200 190 180 170 160 150 140 130 120 110 100 90 80 TO LL <-50.00 70 60 50 40 30 20 10 ppm 45.06 30.18 -26.45 22.36 --0.00 45.07 7.5 1.93 2.05 -30.24 -22.36 C A 7 8 5 ° 4 3 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 9 8 5 4 3 ཡི་ OH 10 2 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 5 4 3 2 that th 7 I 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 115 2.21 4.00 1.0 ppm 6.96 2.76 5.01 1.0 ppm 6.30 1.00arrow_forward
- Curved arrows were used to generate the significant resonance structure and labeled the most significant contribute. What are the errors in these resonance mechanisms. Draw out the correct resonance mechanisms with an brief explanation.arrow_forwardWhat are the: нсе * Moles of Hice while given: a) 10.0 ml 2.7M ? 6) 10.ome 12M ?arrow_forwardYou are asked to use curved arrows to generate the significant resonance structures for the following series of compounds and to label the most significant contributor. Identify the errors that would occur if you do not expand the Lewis structures or double-check the mechanisms. Also provide the correct answers.arrow_forward
- how to get limiting reactant and % yield based off this data Compound Mass 6) Volume(mL Ben zaphone-5008 ne Acetic Acid 1. Sam L 2-propanot 8.00 Benzopin- a col 030445 Benzopin a Colone 0.06743 Results Compound Melting Point (°c) Benzopin acol 172°c - 175.8 °c Benzoping to lone 1797-180.9arrow_forwardAssign ALL signals for the proton and carbon NMR spectra on the following pages.arrow_forward7.5 1.93 2.05 C B A 4 3 5 The Joh. 9 7 8 1 2 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 9 7 8 0.86 OH 10 4 3 5 1 2 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 9 7 8 CI 4 3 5 1 2 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 2.21 4.00 1.5 2.00 2.07 1.0 ppm 2.76arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning





