EBK COLLEGE PHYSICS
3rd Edition
ISBN: 9780321989246
Author: Knight
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 73MSPP
To determine
To find: The correct option for color change of the morpho butterfly.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
mase
as shown
2) A holy of once sty extually at rest & acted upon by
bus mutually perpendicular forces 12 Nand 5N
belowilf the particle moves in derection Calculato
the magnitude of the
acceleration
of
12nt
R
0
so
A
SN
Required information
Two speakers vibrate in phase with each other at 523 Hz. At certain points in the room, the sound waves from the two
speakers interfere destructively. One such point is 1.45 m from speaker #1 and is between 2.00 m and 4.00 m from
speaker #2. The speed of sound in air is 343 m/s.
How far is this point from speaker #2?
m
a) Consider the following function, where A is a constant.
y(x,t) = A(x — vt).
Can this represent a wave that travels along? Explain.
b) Which of the following are possible traveling waves, provide your reasoning and give the velocity of the
wave if it can be a traveling wave.
e-(a²x²+b²²-2abtx
b.1) y(x,t)
b.2) y(x,t)
=
=
A sin(ax² - bt²).
2
b.3) y(x,t)
=
A sin 2π
(+)
b.4) y(x,t)
=
A cos² 2π(t-x).
b.5) y(x,t)
=
A cos wt sin(kx - wt)
Chapter 17 Solutions
EBK COLLEGE PHYSICS
Ch. 17 - The frequency of a light wave in air is 5.3 1014...Ch. 17 - Rank in order the following according to their...Ch. 17 - The wavelength of a light wave is 700 nm in air;...Ch. 17 - A double-slit interference experiment shows...Ch. 17 - Figure Q17.5 shows the fringes observed in a...Ch. 17 - In a double-slit interference experiment,...Ch. 17 - Figure Q17.7 shows the viewing screen in a...Ch. 17 - Figure Q17.7 is the interference pattern seen on a...Ch. 17 - Figure Q17.9 shows the light intensity on a...Ch. 17 - Figure Q17.10 shows the light intensity on a...
Ch. 17 - Light with a wavelength of 600 nm is incident on a...Ch. 17 - White light is incident on a diffraction grating....Ch. 17 - Figure Q17.13 shows a light wave incident on and...Ch. 17 - A soap bubble usually pops because some part of it...Ch. 17 - An oil film on top of water has one patch that is...Ch. 17 - Should the antireflection coating of a microscope...Ch. 17 - Example 17.5 showed that a thin film whose...Ch. 17 - Prob. 18CQCh. 17 - Prob. 19MCQCh. 17 - The frequency of a light wave in air is 4.6 1014...Ch. 17 - Light passes through a diffraction grating with a...Ch. 17 - Blue light of wavelength 450 nm passes through a...Ch. 17 - Yellow light of wavelength 590 nm passes through a...Ch. 17 - Light passes through a 10-m-wide slit and is...Ch. 17 - Prob. 25MCQCh. 17 - You want to estimate the diameter of a very small...Ch. 17 - Prob. 1PCh. 17 - a. How long (in ns) does it take light to travel...Ch. 17 - A 5.0-cm-thick layer of oil (n = 1.46) is...Ch. 17 - A light wave has a 670 nm wavelength in air. Its...Ch. 17 - How much time does it take a pulse of light to...Ch. 17 - A helium-neon laser beam has a wavelength in air...Ch. 17 - Two narrow slits 50 m apart are illuminated with...Ch. 17 - Light from a sodium lamp (= 589 nm) illuminates...Ch. 17 - Two narrow slits are illuminated by light of...Ch. 17 - A double-slit experiment is performed with light...Ch. 17 - Light from a helium-neon laser (= 633 nm) is used...Ch. 17 - Two narrow slits are 0.12 mm apart. Light of...Ch. 17 - In a double-slit experiment, the distance from one...Ch. 17 - A diffraction grating with 750 slits/mm is...Ch. 17 - A 1.0-cm-wide diffraction grating has 1000 slits....Ch. 17 - Light of wavelength 600 nm illuminates a...Ch. 17 - A lab technician uses laser light with a...Ch. 17 - The human eye can readily detect wavelengths from...Ch. 17 - A diffraction grating with 600 lines/mm is...Ch. 17 - A 500 line/mm diffraction grating is illuminated...Ch. 17 - What is the thinnest film of MgF2 (n = 1.38) on...Ch. 17 - A very thin oil film (n = 1.25) floats on water (n...Ch. 17 - A film with n = 1.60 is deposited on glass. What...Ch. 17 - Antireflection coatings can be used on the inner...Ch. 17 - Solar cells are given antireflection coatings to...Ch. 17 - A thin film of MgF2 (n = 1.38) coats a piece of...Ch. 17 - Looking straight downward into a rain puddle whose...Ch. 17 - A helium-neon laser (= 633 nm) illuminates a...Ch. 17 - For a demonstration, a professor uses a razor...Ch. 17 - A 0.50-mm-wide slit is illuminated by light of...Ch. 17 - The second minimum in the diffraction pattern of a...Ch. 17 - What is the width of a slit for which the first...Ch. 17 - A 0.50-mm-diameter hole is illuminated by light of...Ch. 17 - Light from a helium-neon laser (= 633 nm) passes...Ch. 17 - You want to photograph a circular diffraction...Ch. 17 - Infrared light of wavelength 2.5 m illuminates a...Ch. 17 - An advanced computer sends information to its...Ch. 17 - Figure P17.38 shows the light intensity on a...Ch. 17 - Figure P17.38 shows the light intensity on a...Ch. 17 - Your friend has been given a laser for her...Ch. 17 - A double slit is illuminated simultaneously with...Ch. 17 - Figure P17.42 shows the light intensity on a...Ch. 17 - A laser beam of wavelength 670 nm shines through a...Ch. 17 - The two most prominent wavelengths in the light...Ch. 17 - A diffraction grating produces a first-order...Ch. 17 - A diffraction grating is illuminated...Ch. 17 - White light (400-700 nm) is incident on a 600...Ch. 17 - A miniature spectrometer used for chemical...Ch. 17 - Figure P17.49 shows the interference pattern on a...Ch. 17 - Figure P17.4919 shows the interference pattern on...Ch. 17 - Because sound is a wave, it is possible to make a...Ch. 17 - The shiny surface of a CD is imprinted with...Ch. 17 - If sunlight shines straight onto a peacock...Ch. 17 - The wings of some beetles have closely spaced...Ch. 17 - A diffraction grating having 500 lines/mm...Ch. 17 - Light emitted by element X passes through a...Ch. 17 - Light of a single wavelength is incident on a...Ch. 17 - A sheet of glass is coated with a 500-nm-thick...Ch. 17 - A soap bubble is essentially a thin film of water...Ch. 17 - A laboratory dish, 20 cm in diameter, is half...Ch. 17 - You need to use your cell phone, which broadcasts...Ch. 17 - Light from a sodium lamp ( = 589 nm) illuminates a...Ch. 17 - The opening to a cave is a tall, 30-cm-wide crack....Ch. 17 - A diffraction grating has 500 slits/mm. What is...Ch. 17 - Figure P17.65 shows the light intensity on a...Ch. 17 - Figure P17.65 shows the light intensity on a...Ch. 17 - Figure P17.67 shows the light intensity on a...Ch. 17 - One day, after pulling down your window shade, you...Ch. 17 - Prob. 70GPCh. 17 - A helium-neon laser ( = 633 nm), shown in Figure...Ch. 17 - In the laser range-finding experiments of Example...Ch. 17 - Prob. 73MSPPCh. 17 - Prob. 74MSPPCh. 17 - Prob. 75MSPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The capacitor in (Figure 1) is initially uncharged. The switch is closed at t=0. Immediately after the switch is closed, what is the current through the resistor R1, R2, and R3? What is the final charge on the capacitor? Please explain all steps.arrow_forwardSuppose you have a lens system that is to be used primarily for 620-nm light. What is the second thinnest coating of fluorite (calcium fluoride) that would be non-reflective for this wavelength? × nm 434arrow_forwardThe angle between the axes of two polarizing filters is 19.0°. By how much does the second filter reduce the intensity of the light coming through the first? I = 0.106 40 xarrow_forward
- An oil slick on water is 82.3 nm thick and illuminated by white light incident perpendicular to its surface. What color does the oil appear (what is the most constructively reflected wavelength, in nanometers), given its index of refraction is 1.43? (Assume the index of refraction of water is 1.33.) wavelength color 675 × nm red (1 660 nm)arrow_forwardA 1.50 μF capacitor is charging through a 16.0 Ω resistor using a 15.0 V battery. What will be the current when the capacitor has acquired 1/4 of its maximum charge? Please explain all stepsarrow_forwardIn the circuit shown in the figure (Figure 1), the 6.0 Ω resistor is consuming energy at a rate of 24 J/s when the current through it flows as shown. What are the polarity and emf of the battery E, assuming it has negligible internal resistance? Please explain all steps. I know you need to use the loop rule, but I keep getting the answer wrong.arrow_forward
- If you connect a 1.8 F and a 2.6 F capacitor in series, what will be the equivalent capacitance?arrow_forwardSuppose that a particular heart defibrillator uses a 1.5 x 10-5 Farad capacitor. If it is charged up to a voltage of 7300 volts, how much energy is stored in the capacitor? Give your answer as the number of Joules.arrow_forwardThe voltage difference across an 8.3 nanometer thick cell membrane is 6.5 x 10-5volts. What is the magnitude of the electric field inside this cell membrane? (Assume the field is uniform, and give your answer as the number of Volts per meter... which is the same as the number of Newtons per Coulomb.)arrow_forward
- Three identical capacitors are connected in parallel. When this parallel assembly of capacitors is connected to a 12 volt battery, a total of 3.1 x 10-5 coulombs flows through the battery. What is the capacitance of one individual capacitor? (Give your answer as the number of Farads.)arrow_forwardSuppose you construct your own capacitor by placing two parallel plates at a distance 0.27 meters apart. The plates each have a surface area of 0.64 square meters. What is the capacitance of this setup? (Give your answer as the number of Farads.)arrow_forwardDraw a diagram with the new arrows. No they do not point all towards the center.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY