Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 71P
To determine
To prove:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Either give an exact answer, or make sure you include at least 4 significant digits on your answer.
The pressure P (in kilopascals), volume V (in liters), and temperature T (in kelvins) of a mole of an
ideal gas are related by the equation PV = 8.31T. Find the rate at which the volume is changing
when the temperature is 330 K and increasing at a rate of 0.15 K/s and the pressure is 26 and
increasing at a rate of 0.03 kPa/s.
1110
L/S
An ideal gas, at pressure 4.9 atmospheres, in a volume 1.1 m3 and at a temperature of 308 K, is compressed into a lower volume 0.44 m3, at a pressure of 6.26 atmospheres. What is the new temperature, in K with two digits of precision?
Problem 3.
The viral coefficients of a gas at 20 °C and 11.5 bar are B = -138 cm³ mol¹ and C=7222 cmº mol².
Calculate the V (molar volume) Z (compressibility factor) of the gas. Use the equation below (R =
83.14 cm³ bar mol-¹ K-¹).
PV
2 = ² = (1 + = + =)
Z
RT
Chapter 17 Solutions
Essential University Physics (3rd Edition)
Ch. 17.1 - If you double the kelvin temperature of a gas,...Ch. 17.2 - You bring a pot of water to boil and then forget...Ch. 17.3 - The figure shows a donut-shaped object. If its...Ch. 17 - Prob. 1FTDCh. 17 - According to the ideal-gas law, what should be the...Ch. 17 - Prob. 3FTDCh. 17 - The average speed of the molecules in a gas...Ch. 17 - Suppose you start running while holding a closed...Ch. 17 - Prob. 6FTDCh. 17 - Your roommate claims that ice and snow must be at...
Ch. 17 - Whats the temperature of water just under the ice...Ch. 17 - Ice and water have been together in a glass for a...Ch. 17 - Which takes more heat: melting a gram of ice...Ch. 17 - The atmospheres of relatively low-mass planets...Ch. 17 - The triple point of water defines a precise...Ch. 17 - How is it possible to have boiling water at a...Ch. 17 - How does a pressure cooker work?Ch. 17 - Suppose mercury and glass had the same coefficient...Ch. 17 - A bimetallic strip consists of thin pieces of...Ch. 17 - Marss atmospheric pressure is about 1% that of...Ch. 17 - Prob. 18ECh. 17 - Whats the pressure of an ideal gas if 3.5 mol...Ch. 17 - Prob. 20ECh. 17 - (a) If 2.0 mol of an ideal gas are initially at...Ch. 17 - A pressure of 1010 Pa is readily achievable with...Ch. 17 - Whats the thermal speed of hydrogen molecules at...Ch. 17 - In which gas are the molecules moving faster:...Ch. 17 - How much energy does it take to melt a 65-g ice...Ch. 17 - It takes 200 J to melt an 8.0-g sample of one of...Ch. 17 - If it takes 840 kJ to vaporize a sample of liquid...Ch. 17 - Carbon dioxide sublimes (changes from solid to...Ch. 17 - Find the energy needed to convert 28 kg of liquid...Ch. 17 - A copper wire is 20 m long on a winter day when...Ch. 17 - You have exactly 1 L of ethyl alcohol at room...Ch. 17 - A Pyrex glass marble is 1.00000 cm in diameter at...Ch. 17 - At 0C, the hole in a steel washer is 9.52 mm in...Ch. 17 - Suppose a single piece of welded steel railroad...Ch. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - A compressed air cylinder stands 100 cm tall and...Ch. 17 - Youre a lawyer with an unusual case. A...Ch. 17 - A 3000-mL flask is initially open in a room...Ch. 17 - The recommended treatment for frostbite is rapid...Ch. 17 - A stove burner supplies heat to a pan at the rate...Ch. 17 - If a 1-megaton nuclear bomb were exploded deep in...Ch. 17 - Youre winter camping and are melting snow for...Ch. 17 - Prob. 44PCh. 17 - A refrigerator extracts energy from its contents...Ch. 17 - Climatologists have recently recognized that black...Ch. 17 - Repeat Example 17.4 with an initial ice mass of 50...Ch. 17 - How much energy does it take to melt 10 kg of ice...Ch. 17 - Water is brought to its boiling point and then...Ch. 17 - Prob. 50PCh. 17 - Whats the minimum amount of ice in Example 17.4...Ch. 17 - A bowl contains 16 kg of punch (essentially water)...Ch. 17 - A 50-g ice cube at 10C is placed in an equal mass...Ch. 17 - Prob. 54PCh. 17 - What power is needed to melt 20 kg of ice in 6.0...Ch. 17 - You put 300 g of water at 20C into a 500-W...Ch. 17 - If 4.5 105 kg of emergency cooling water at 10C...Ch. 17 - Describe the composition and temperature of the...Ch. 17 - A glass marble 1.000 cm in diameter is to be...Ch. 17 - Prob. 60PCh. 17 - A steel ball bearing is encased in a Pyrex glass...Ch. 17 - Fuel systems of modern cars are designed so...Ch. 17 - A rod of length L0 is clamped rigidly at both...Ch. 17 - Prob. 64PCh. 17 - A solar-heated house stores energy in 5.0 tons of...Ch. 17 - Show that the coefficient of volume expansion of...Ch. 17 - Waters coefficient of volume expansion in the...Ch. 17 - When the expansion coefficient varies with...Ch. 17 - Ignoring air resistance, find the height from...Ch. 17 - The timekeeping of a grandfather clock is...Ch. 17 - Prob. 71PCh. 17 - Prob. 72PCh. 17 - Figure 17.12 shows an apparatus used to determine...Ch. 17 - Prob. 74PCh. 17 - (a) Show that, for an ideal gas, the speed of...Ch. 17 - The Maxwell-Boltzmann distribution, plotted in...Ch. 17 - At high gas densities, the van der Waals equation...Ch. 17 - Prob. 78PPCh. 17 - Prob. 79PPCh. 17 - Because some pathogens can survive 120C...Ch. 17 - Prob. 81PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- One process for decaffeinating coffee uses carbon dioxide ( M=44.0 g/mol) at a molar density of about 14,0 mol/m3 and a temperature of about 60 . (a) Is CO2 a solid, liquid, gas, or supercritical fluid under those conditions? (b) The van der Waals constants for carbon dioxide are a=0.3658 Pa m6/mol2 and b=4.286105 m3/mol. Using the van der Waals equation, estimate pressure of CO2 at that temperature and density. `arrow_forwardThe pressure, volume, and temperature of a mole of an ideal gas are related by the equation PV = 8.31T, where P is measured in kilopascals, V in liters, and T in kelvins. Use differentials to find the approximate change in the pressure (in kPa) if the volume increases from 14 L to 14.3 L and the temperature decreases from 325 K to 320 K. (Note whether the change is positive or negative in your answer. Round your answer to two decimal places.)arrow_forwardConsider an ideal gas at temperature T = 578 K and pressure p = 2 atm. Calculate the average volume per molecule in this gas in units of cubic nanometers (a nanometer is 10-9 m). Do not include units in your answer and state your answer as a number in normal form.arrow_forward
- The pressure P (in kilopascals), volume V (in liters), and temperature T (in kelvins) of a mole of an ideal gas are related by the equation PV = 8.317. Find the rate at which the volume is changing when the temperature is 325 K and increasing at a rate of 0.05 K/s and the pressure is 29 and increasing at a rate of 0.07 kPa/s. Please show your answers to at least 4 decimal places. dV dt L/sarrow_forwardCompute the density in units of of an ideal gas under the following conditions: a) At and Torr pressure (1 Torr = 1mm Hg) this is called loschmidt number. b) In a vacuum of Torr at room temperature . This number is useful one for the experimentalist to know by heart. (10^-3 Torr = 1 micron)arrow_forwardIf a 3 m3 of gas initially at STP is placed under a pressure of 2 atm, the temperature of the gas rises to 22◦C. What is the volume now? Calculate to 2 decimals.arrow_forward
- If the dew point of air (35°C and 1 atm) is 20 °C, what is the RH under that temperature and pressure (35°C and 1 atm)? What is the volume fraction?arrow_forwardA bottle of volume V = 0.15 m³ contains helium gas (a monatomic gas) at a pressure p = 722,266 Pa (Pascal = N/m² and temperature T = 300 K. Calculate a numerical value for the internal energy U of this gas. Include units in your answer, using Sl units (m for meters, kg for kilograms, s for seconds, J for joules, K for kelvin, etc.). Write your answer as an exponential as described in the instructions.arrow_forwardA (1.0x10^1) liter bottle is filled with nitrogen (N2) at STP (Standard Temperature and Pressure is 1 atm and 273 K) and closed tight. If the temperature is raised to 100° C, what will be the new pressure in SI units to two significant figures.arrow_forward
- a) Calculate the volume in ft of one Ib-mole of air (MW = 29 lbm/lb-mole) at a temperature of 492 R at a pressure of 1 atm (absolute). b) Repeat the calculation of a) but now considering 1 Ib-mole of CO2 (MW= 44 lbmlb-mole). c) Calculate the molar volume (V) of this mole of air in ft'/lb-mole. d) Calculate the density (P) of air in Ibm/ft under these conditions e) Calculate the density (p) of CO, in Ib.m/ft under these conditionsarrow_forward6. (a) Write down an expression for the volume difference dV between two equilibrium states in which the temperature and pressure differ by dT and dp respectively, T and P being independent. (b) Write down a similar expression for the pressure difference dP between two equilibrium states in which T and V are independent. (c) Proceed to show that the partial derivatives are related by: (₁),₂= =-1 OP ar/v av/parrow_forwardAn atom of neon has a radius Ne-38. pm and an average speed in the gas phase at 25°C of 350.m/s. Suppose the speed of a neon atom at 25°C has been measured to within 0.10%. Calculate the smallest possible length of box inside of which the atom could be known to be located with certainty. Write your answer as a multiple of "Ne and round it to 2 significant figures. For example, if the smallest box the atom could be in turns out to be 42.0 times the radius of an atom of neon, you would enter "42.Ne" as your answer. [arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning