PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
The cable drum has a mass of 610 kg with radius of gyration of 385 mm about its center O and is mounted in bearings on the 1325-kg
carriage. The carriage is initially moving to the left with a speed of 1.8 m/s, and the drum is rotating counterclockwise with an angular
velocity of 2.0 rad/s when a constant horizontal tension T = 345 N is applied to the cable at time t = 0. Determine the velocity v of the
carriage and the angular velocity w of the drum when t = 20 s. Neglect the mass of the carriage wheels. The velocity v is positive if to
the right, negative if to the left. The angular velocity is positive if counterclockwise, negative if clockwise.
%3D
%3D
T = 345 N
610 kg
415 mm
1325 kg
The 31-kg reel is mounted on the 16-kg cart.
Part A: If the cable wrapped around the inner hub of the reel is subjected to a force of P=50N, determine the velocity of the cart when t = 4.2 s. The radius of gyration of the reel about its center of mass O is kO=250mm. Neglect the size of the small wheels.
Part B: Determine the angular velocity of the reel when t = 4.2 s.
The dump truck carries 5 m³ of dirt with a
density of 1600 kg /m³, and the elevating
mechanism rotates the dump about the pivot
A at a constant angular rate of 4 deg /s. The
mass center of the dump and load is at G.
Determine the maximum power P required
during the tilting of the load.
1500 mm
900
mm
Knowledge Booster
Similar questions
- The 30-kg wheel has a radius of gyration about its center O of ko = 240 mm, and radius r = 0.5 m. When the wheel is subjected to the constant force F = 388 N, applied to the wheel's center axle at an angle = 6°, it starts rolling from rest. Determine the total angular impulse L (in N•m.s) about the wheel's IC after 3.7 seconds if the wheel has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 1 place after the decimal point. Take g = 9.81 m/s². Your Answer: G Answer Ө Farrow_forwardThe four balls, each of mass m = 2.3 kg, are rigidly mounted to the rotating frame and shaft, which are initially rotating freely about the vertical z-axis at the angular rate of 19.5 rad/s clockwise when viewed from above. The distances r = 0.25 m and R = 0.52 m. If a constant torque M = 23.1 N·m is applied to the shaft, calculate the time t to reverse the direction of rotation and reach an angular velocity = 19.5 rad/s in the same sense as M. m R m r M m R marrow_forwardPlease use value 20 kg inner gear instead of 10 kg inner geararrow_forward
- The concrete block weighing 644 lb is elevated by the hoisting mech- anism shown, where the cables are securely wrapped around the re- spective drums. The drums, which are fastened together and turn as a single unit about their mass center at 0, have a combined weight of 322 lb and a radius of gyration about O of 18 in. If a constant tension P = 400 lb is maintained by the power unit at A, determine the vertical acceleration of the block and the resultant force on the bearing at O. Solve using; 24" 12" P = 400 lb (a) Two free body diagrams for concrete block and drum. W = 322 lb ko = 18" (b) One system block diagram ( concrete block and drum as one system). 45° A 644 lbarrow_forwardThe link AC (6 kg) rotates in the vertical plane about the point B. A spring (k = 600 N/m, points C to D) of unstretched length 225 mm is fixed to the link as shown. If the link is released from rest in the position shown below, determine its angular velocity after it has rotated 90°. You may take the moment of inertia of the link AC about its mass center as Igac =÷ml?. 180 900 mmarrow_forwardThe 21-kg wheel has a radius of gyration about its center O of ko =260 mm, and radius r = 0.5 m. When the wheel is subjected to the constant force F = 247 N, applied to the wheel's center axle at an angle = 6°, it starts rolling from rest. Determine the wheel's angular velocity W (in rad/s) after 4.0 seconds if the wheel has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 1 place after the decimal point. Take g = 9.81 m/s². Your Answer: G Answer r 0 Farrow_forward
- The 27-kg wheel has a radius of gyration about its center O of ko = 260 mm, and radius r = 0.5 m. When the wheel is subjected to the constant force F = 354 N, applied to the wheel's center axle at an angle = 6°, it starts rolling from rest. Determine the wheel's angular velocity W (in rad/s) after 3.2 seconds if the wheel has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 1 place after the decimal point. Take g = 9.81 m/s². F 0 Your Answer: Answerarrow_forwardThe circular disk of mass m and radius r, is rolling through the bottom of the circular path of radius R. If the disk has an angular velocity determine the force N exerted by the path on the disk.arrow_forward3. A yo-yo has a weight of 0.3 lb and a radius of gyration ko = 0.06 ft. If it is released from rest, determine how far it must descend in order to attain an angular velocity @ = 70 rad/s. neglect the mass of the string and assume that the string is wound around the central peg such that the mean radius at which it unravels is r = 0.02 ft.arrow_forward
- 3. The 30-kg gear A has a radius of gyration about its center of mass O of ko = 125 mm. If the 20-kg gear rack B is subjected to a force of P = 200 N, determine the time required for the gear to obtain an angular velocity of 20 rad/s, starting from rest. The contact between the gear rack and the horizontal plane is smooth. 0.15 m ru P = 200 Narrow_forwardThe shown spool has a mass of 450 kg and aradius of gyration Gk=1.2 m. It rests on thesurface of conveyer belt for which the coefficient offriction m= 0.5. If the conveyer acceleratesat2 1.2m / S and the spools rolls without slipping,determine the tension in the wire and the angularacceleration of the spoolarrow_forwardThe 24-kg wheel has a radius of gyration about its center O of ko = 260 mm, and radius r= 0.4 m. When the wheel is subjected to the couple moment M = 90 N•m, it slips as it rolls. Determine the linear acceleration of the wheel's center O (in m/s?). The coefficient of kinetic friction between the wheel and the plane is Uk = 0.45. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s?. Marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY