Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 69Q
(a)
To determine
The sum of the masses of two stars, if one star of the binary star orbits another in every
(b)
To determine
The individual masses of the stars, if the ratio of their masses is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A certain binary system consists of two stars that have equal masses and revolve in circular orbits around a fixed point half-way between them.
If the orbital velocity of each star is v=186 km/s and the orbital period of each is 11.3 days, calculate the mass M of each star. Give your answer in units of the solar mass, 1.99×1030 kg (e.g. if each planet's mass is 3.98×1030 kg, you would answer "2.00").
Solve the following problem:
Two stars, named A and B, each with a mass equal to the Sun's mass are in orbit around each other. If the distance between the two stars is 1.0 AU. What is the period of their orbit?
Describe each step in solving the problem:
A planet (in another galaxy) takes 5 000 Earth days to complete one full revolution around its own star (not the Sun). It is exactly as far away from its star as Earth is to its own Sun. Draw a FBD, then determine how many times more or less massive this star is than our sun (in other words, give a factor of mass, e.g “5x larger” or “5x smaller”)
Chapter 17 Solutions
Universe
Ch. 17 - Prob. 1CCCh. 17 - Prob. 2CCCh. 17 - Prob. 3CCCh. 17 - Prob. 4CCCh. 17 - Prob. 5CCCh. 17 - Prob. 6CCCh. 17 - Prob. 7CCCh. 17 - Prob. 8CCCh. 17 - Prob. 9CCCh. 17 - Prob. 10CC
Ch. 17 - Prob. 11CCCh. 17 - Prob. 12CCCh. 17 - Prob. 13CCCh. 17 - Prob. 14CCCh. 17 - Prob. 15CCCh. 17 - Prob. 16CCCh. 17 - Prob. 17CCCh. 17 - Prob. 18CCCh. 17 - Prob. 19CCCh. 17 - Prob. 20CCCh. 17 - Prob. 21CCCh. 17 - Prob. 22CCCh. 17 - Prob. 23CCCh. 17 - Prob. 24CCCh. 17 - Prob. 1CLCCh. 17 - Prob. 2CLCCh. 17 - Prob. 3CLCCh. 17 - Prob. 4CLCCh. 17 - Prob. 1QCh. 17 - Prob. 2QCh. 17 - Prob. 3QCh. 17 - Prob. 4QCh. 17 - Prob. 5QCh. 17 - Prob. 6QCh. 17 - Prob. 7QCh. 17 - Prob. 8QCh. 17 - Prob. 9QCh. 17 - Prob. 10QCh. 17 - Prob. 11QCh. 17 - Prob. 12QCh. 17 - Prob. 13QCh. 17 - Prob. 14QCh. 17 - Prob. 15QCh. 17 - Prob. 16QCh. 17 - Prob. 17QCh. 17 - Prob. 18QCh. 17 - Prob. 19QCh. 17 - Prob. 20QCh. 17 - Prob. 21QCh. 17 - Prob. 22QCh. 17 - Prob. 23QCh. 17 - Prob. 24QCh. 17 - Prob. 25QCh. 17 - Prob. 26QCh. 17 - Prob. 27QCh. 17 - Prob. 28QCh. 17 - Prob. 29QCh. 17 - Prob. 30QCh. 17 - Prob. 31QCh. 17 - Prob. 32QCh. 17 - Prob. 33QCh. 17 - Prob. 34QCh. 17 - Prob. 35QCh. 17 - Prob. 36QCh. 17 - Prob. 37QCh. 17 - Prob. 38QCh. 17 - Prob. 39QCh. 17 - Prob. 40QCh. 17 - Prob. 41QCh. 17 - Prob. 42QCh. 17 - Prob. 43QCh. 17 - Prob. 44QCh. 17 - Prob. 45QCh. 17 - Prob. 46QCh. 17 - Prob. 47QCh. 17 - Prob. 48QCh. 17 - Prob. 49QCh. 17 - Prob. 50QCh. 17 - Prob. 51QCh. 17 - Prob. 52QCh. 17 - Prob. 53QCh. 17 - Prob. 54QCh. 17 - Prob. 55QCh. 17 - Prob. 56QCh. 17 - Prob. 57QCh. 17 - Prob. 58QCh. 17 - Prob. 59QCh. 17 - Prob. 60QCh. 17 - Prob. 61QCh. 17 - Prob. 62QCh. 17 - Prob. 63QCh. 17 - Prob. 64QCh. 17 - Prob. 65QCh. 17 - Prob. 66QCh. 17 - Prob. 67QCh. 17 - Prob. 68QCh. 17 - Prob. 69QCh. 17 - Prob. 70QCh. 17 - Prob. 71QCh. 17 - Prob. 72QCh. 17 - Prob. 73QCh. 17 - Prob. 74QCh. 17 - Prob. 75QCh. 17 - Prob. 76QCh. 17 - Prob. 77QCh. 17 - Prob. 78QCh. 17 - Prob. 79QCh. 17 - Prob. 80Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Convert 1.39 x 10^9 kilograms to Jupiter Masses, MJ. The mass of Jupiter is known as MJ = 1.898×1027 kg. Mplanet = _________________________ MJ *The accepted mass of this planet HD 209458b is Mplanet = 0.69 MJ. Check your answer for correctness.arrow_forwardM6arrow_forwardConvert 9.021 x 1048 kg to Jupiter Masses (MJ). The mass of Jupiter is known as MJ = 1.898×1027 kg. Mplanet = _________________________ MJ ***The accepted mass of this planet HD 209458b is Mplanet = 0.69 MJ. Check your answer for correctness.arrow_forward
- In 2004, astronomers reported the discovery of a large Jupiter-sized planet orbiting very close to the star HD179949. The orbit was just 6.4x106 km (about 9 less than the orbit of Mercury) and the planet takes 3.1 days to make one circular orbit. The mass of the star is Answerx_______1030 kg. (Give the number before the exponent.)arrow_forwardTime From this light curve, we can deduce that... O the star has a high mass exoplanet orbiting it O the star has an exoplanet orbiting it that has an eccentric orbit O the star has an exoplanet orbiting it that has an eccentric orbit O the star has an exoplanet that is not on the same orbital plane as the star L Brightnessarrow_forwardPluto is considered a binary dwarf planet system with its companion Charon. Pluto has a mass of 1.303 x 1022 kg and mean radius of 1188.3 km. Charon has a mass of 1.586 x 1021 kg and mean radius of 606 km. The binary 5. system has a semi-major axis with the sun of 39.482 AU and there is an average distance of 19,591.4 km between the two dwarf planets. What is the system's center of mass with respect to Pluto, and why does this mean that Charon is a binary system and not a moon?arrow_forward
- Assume that there are 2 stars - Aqua and Ruby. They are in orbit around a massive star which is named as Star Ai that has a mass 5.98 x 1028 kg. The orbit of Ruby is circle and has a period of 1.430 yrs. The orbit of Aqua is an ellipse. At its periapsis, the distance of Star Aqua is twice as far from Star Ai than Star Ruby is. Solve how far is Star Aqua's apoapsis if Star Aqua is considered 3.250 times faster in periapsis than in apoapsis. Note: You can ignore the gravitational interaction that exists between Star Aqua and Star Ruby. Use the figure to understand the problem better. Aqua periapsis Choices: a. 1.9x10¹¹ m b. 3.8x10¹1 m c. 3.6x10¹0 m d. 1.2x10¹¹ m Ruby Ai apoapsisarrow_forwardIn the parallax method of determining stellar distances, the angle to a star is measured while the earth is on one side of the sun and then again six months later, as in the diagram below. Assume the earth-sun distance is 1 Astronomical Unit. The parallax angle of Alpha Centauri is 0= 2.1 x 10-4 ° . Find the distance from the sun to a Centauri in light years. Assume a circular orbit for the Earth. a Centauri Earth (June) Earth (December) Sunarrow_forwardA planet of mass m= 8.45 x 1024 kg is orbiting in a circular path a star of mass M= 6.95 x 1029 kg. The radius of the orbit is R= 3.15 x 107km. What is the orbital pperiod (in Earth days) of the planet Pplanet? Express your answer to three significant figures. Pplanet = ? daysarrow_forward
- One way that astronomers detect planets outside of our solar system (called exoplanets) is commonly referred to as the radial velocity method. This relies on the __________ ___________ to cause shifts in the spectral lines of stars as the stars perform tiny orbits around the center of mass of the host star and its orbiting planets. Those tiny orbits cause the stars to periodically (and therefore predictably) move closer to and further away from our solar system. Luckily, this method only relies on the motion of the star; its physical distance from us does not impact the resulting shifts.arrow_forwardConsider the attached light curve for a transiting planet observed by the Kepler mission. If the host star is identical to the sun, what is the radius of this planet? Give your answer in terms of the radius of Jupiter. Brightness of Star Residual Flux 0.99 0.98 0.97 0.006 0.002 0.000 -8-881 -0.06 -0.04 -0.02 0.00 Time (days) → 0.02 0.04 0.06arrow_forwardI found a planet with an orbital radius of only 0.2 AU. The parent star is only half as massive as the sun (M=0.5). What is the orbital period? 1) 0.56 years 2) 0.13 years 3) 0.04 years 4) 1.3 yearsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning