Physics of Everyday Phenomena
Physics of Everyday Phenomena
9th Edition
ISBN: 9781259894008
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 5SP

(a)

To determine

The location of the image formed by the objective.

(a)

Expert Solution
Check Mark

Answer to Problem 5SP

The location of the image formed by the objective is at 3.6cm.

Explanation of Solution

Given Info: The objective lens of a microscope has a focal length of 0.9cm and an eyepiece of focal length 2.4cm. The object is located 1.2cm in front of the objective lens.

Write the expression for the relation between the image distance and the focal length.

1o+1i=1f

Here,

o is the object distance

i is the image distance

f is the focal length

Substitute 1.2cm for o and 0.9cm for f and re-write in terms of i.

11.2cm+1i=10.9cm1i=10.9cm11.2cm=0.278cm1i=3.6cm

Conclusion:

Therefore, the location of the image formed by the objective is at 3.6cm.

(b)

To determine

The magnification of the image.

(b)

Expert Solution
Check Mark

Answer to Problem 5SP

The magnification of the image is 3×.

Explanation of Solution

Given Info: The objective lens of a microscope has a focal length of 0.9cm and an eyepiece of focal length 2.4cm. The object is located 1.2cm in front of the objective lens.

Write the expression for the magnification of the image.

m=io

Here,

m is the magnification

Substitute 3.6cm for i and 1.2cm for o to get m.

m=3.6cm1.2cm=3×

This means that the image is three time larger but is inverted.

Conclusion:

Therefore, the magnification of the image is 3×.

(c)

To determine

The location of the image formed by the eyepiece.

(c)

Expert Solution
Check Mark

Answer to Problem 5SP

The location of the image formed by the eyepiece is at 7.2cm.

Explanation of Solution

Given Info: The objective lens of a microscope has a focal length of 0.9cm and an eyepiece of focal length 2.4cm. The object is located 1.2cm in front of the objective lens. The eyepiece is 1.8cm beyond the image formed of the object.

Write the expression for the relation between the image distance and the focal length.

1o+1i=1f

Substitute 1.8cm for o and 2.4cm for f and re-write in terms of i.

11.8cm+1i=12.4cm1i=12.4cm11.8cm=0.138cm1i=7.2cm

Conclusion:

Therefore, the location of the image formed by the eyepiece is at 7.2cm.

(d)

To determine

The magnification of the image.

(d)

Expert Solution
Check Mark

Answer to Problem 5SP

The magnification of the image is 4×.

Explanation of Solution

Given Info: The objective lens of a microscope has a focal length of 0.9cm and an eyepiece of focal length 2.4cm. The object is located 1.2cm in front of the objective lens. The eyepiece is 1.8cm beyond the image formed of the object.

Write the expression for the magnification of the image.

m=io

Substitute 7.2cm for i and 1.8cm for o to get m.

m=7.2cm1.8cm=4×

This means that the image is four times larger.

Conclusion:

Therefore, the magnification of the image is 4×.

(e)

To determine

The overall magnification produced.

(e)

Expert Solution
Check Mark

Answer to Problem 5SP

The overall magnification produced is 12×.

Explanation of Solution

Given Info: The objective lens of a microscope has a focal length of 0.9cm and an eyepiece of focal length 2.4cm. The object is located 1.2cm in front of the objective lens. The eyepiece is 1.8cm beyond the image formed of the object.

Write the expression for the overall magnification.

M=m1m2

Here,

M is the overall magnification

m1 is the magnification due to the objective

m2 is the magnification of the eyepiece

Substitute 3× for m1 and 4× for m2 to get M.

M=(3)(4)×=12×

Conclusion:

Therefore, the overall magnification produced is 12×.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
You are working with a team that is designing a new roller coaster-type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 150 kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 100 m tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 370 N acts from computer-controlled brakes. For the last 20 m, which is horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit. (a) Determine the required constant friction force (in N) for the last 20 m for the empty test car. N (b) Find the highest speed (in m/s) reached by the car during the final section of track length…
A player kicks a football at the start of the game. After a 4 second flight, the ball touches the ground 50 m from the kicking tee. Assume air resistance is negligible and the take-off and landing height are the same (i.e., time to peak = time to fall = ½ total flight time). (Note: For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.) Calculate and answer all parts. Only use equations PROVIDED:
Please answer.

Chapter 17 Solutions

Physics of Everyday Phenomena

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY