Physical Science (12th Edition), Standalone Book
12th Edition
ISBN: 9781260150544
Author: Bill W. Tillery
Publisher: McGraw Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 5PEA
To determine
The comparison of the mineral moissanite
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please draw the sketch and a FBD
8.30 Asteroid Collision. Two asteroids of equal mass in the aster-
oid belt between Mars and Jupiter collide with a glancing blow. Asteroid
A, which was initially traveling at 40.0 m/s, is deflected 30.0° from its
original direction, while asteroid B, which was initially at rest, travels at
45.0° to the original direction of A (Fig. E8.30). (a) Find the speed of
each asteroid after the collision. (b) What fraction of the original kinetic
energy of asteroid A dissipates during this collision?
Figure E8.30
A
A
40.0 m/s
30.0°
B
T-
45.0°
Please draw a sketch and a FBD
Chapter 17 Solutions
Physical Science (12th Edition), Standalone Book
Ch. 17 - 1. A naturally occurring inorganic solid element...Ch. 17 - 2. A structural unit that is repeated in three...Ch. 17 - 3. Which element is the most abundant in Earth’s...Ch. 17 - 4. Minerals are classified as
a. silicates.
b....Ch. 17 - 5. The most abundant class of nonsilicates is...Ch. 17 - 6. Silicates are classified into two groups based...Ch. 17 - 7. The color of a mineral when it is finely...Ch. 17 - 8. The hardness of a mineral is rated using the
a....Ch. 17 - 9. The ratio of the mineral’s density to the...Ch. 17 -
10. Molten rock material from which minerals...
Ch. 17 -
11. An aggregation of one or more minerals that...Ch. 17 -
12. Rocks that are formed from molten minerals...Ch. 17 -
13. Igneous rock that slowly cooled deep below...Ch. 17 -
14. The rock that makes up the bulk of Earth’s...Ch. 17 -
15. The rock that makes up the ocean basins and...Ch. 17 -
16. Rocks that are formed from particles of other...Ch. 17 - 17. Accumulations of silt, sand, or other...Ch. 17 - 18. Limestone and dolomite are
a. sandstone.
b....Ch. 17 - 19. Heat and pressure change rocks into
a.igneous...Ch. 17 - 20. The relationship between rocks that are...Ch. 17 - 21. The thin layer that covers Earth’s surface is...Ch. 17 - 22. Based on its abundance in Earth's crust, most...Ch. 17 - 23. The most common rock in Earth's crust is
a....Ch. 17 - 24. An intrusive igneous rock will have which type...Ch. 17 - 25. Which igneous rock would have the greatest...Ch. 17 - 26. Which of the following formed from previously...Ch. 17 - 27. Sedimentary rocks are formed by the processes...Ch. 17 - 28. The greatest extent of metamorphic changes has...Ch. 17 - 29. Which type of rock probably existed first,...Ch. 17 - 30. Earth is unique because it has
a. CO2 in its...Ch. 17 - 31. The common structural feature of all silicates...Ch. 17 - 32. The one group that is not a subgroup of the...Ch. 17 - 33. The property that is not considered useful in...Ch. 17 - 34. The specific gravity of a mineral depends on...Ch. 17 - 35. Fluorite is a mineral that floats in liquid...Ch. 17 - 36. The group that is not a class of rocks is
a....Ch. 17 - 37. The classification of rocks is based on
a....Ch. 17 - 38. An example of a sedimentary rock is
a....Ch. 17 - 39. The term that does not describe a size of...Ch. 17 - 40. Dissolved rock materials form
a. chemical...Ch. 17 - 41. An example of a metamorphic rock is
a....Ch. 17 - 42. Extrusive igneous rocks are formed on Earth’s...Ch. 17 - 43. Foliation is found in
a. sedimentary rocks.
b....Ch. 17 - Prob. 1QFTCh. 17 - Prob. 2QFTCh. 17 - 3. Explain why each mineral has its own unique set...Ch. 17 - 4. Identify at least eight physical properties...Ch. 17 - 5. Explain how the identity of an unknown mineral...Ch. 17 - 6. What is a rock?
Ch. 17 - 7. Describe the concept of the rock cycle.
Ch. 17 - Prob. 8QFTCh. 17 - 9. Which major kind of rock, based on the way it...Ch. 17 -
10. What is the difference between magma and...Ch. 17 -
11. What is meant by the “texture" of an igneous...Ch. 17 -
12. What are the basic differences between...Ch. 17 -
13. Explain why a cooled and crystallized magma...Ch. 17 - Prob. 14QFTCh. 17 -
15. What are clastic sediments? How are they...Ch. 17 -
16. Briefly describe the rock-forming process...Ch. 17 - 17. What are metamorphic rocks? What limits the...Ch. 17 - 18. Describe what happens to the minerals as shale...Ch. 17 - Prob. 19QFTCh. 17 - 1. What are the significant similarities and...Ch. 17 - 2. Is ice a mineral? Describe reasons to support...Ch. 17 - 3. If ice is a mineral, is a glacier a rock?...Ch. 17 - Prob. 4FFACh. 17 - Prob. 1PEACh. 17 - Prob. 2PEACh. 17 - Prob. 3PEACh. 17 - Prob. 4PEACh. 17 - Prob. 5PEACh. 17 - Prob. 6PEACh. 17 - Prob. 7PEACh. 17 - Prob. 8PEACh. 17 - Prob. 9PEACh. 17 - Prob. 10PEACh. 17 - Prob. 11PEACh. 17 - Prob. 12PEACh. 17 - A granite countertop measuring 4.57 m long by 0.75...Ch. 17 - A limestone building stone measuring 40.0 cm long...Ch. 17 - Granite boulders with a minimum mass of 1.50...Ch. 17 - 1. A sample of the mineral sylvite measures 2.68...Ch. 17 - 2. A rectangular crystal of calcium plagioclase...Ch. 17 - 3. A spherical specimen of the mineral quartz...Ch. 17 - 4. Geologists separate nonferromagnesian silicates...Ch. 17 - 5. Compare the mineral halite (NaCl, hardness of...Ch. 17 - 6. Mica is a sheet silicate while quartz is a...Ch. 17 - 7. Magnesite is a magnesium ore mineral and has...Ch. 17 - 8. Magnetite and hematite are iron ore minerals....Ch. 17 - 9. An iron mine has an ore deposit estimated at...Ch. 17 - 10. An ore deposit consisting of chert and...Ch. 17 -
11. For a given igneous rock type, the proportion...Ch. 17 -
12. Based on Figure 17.13, what is the average...Ch. 17 -
13. A gabbro countertop measuring 4.70 m long by...Ch. 17 -
14. A sandstone building stone measuring 50.0 cm...Ch. 17 - Prob. 15PEB
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please draw a sketch and a FBDarrow_forward8.69 Spheres A (mass 0.020 kg), B (mass 0.030 kg), and C (mass 0.050 kg) are approaching the origin as they slide on a frictionless air table. The initial velocities of A and B are given in Fig. P8.69. All three spheres arrive at the origin at the same time and stick together. (a) What must the x- and y-components of the initial velocity of C be if all three objects are to end up moving at 0.50 m/s in the +x-direction after the col- lision? (b) If C has the velocity found in part (a), what is the change in the kinetic energy of the system of three spheres as a result of the collision? Figure P8.69 UC C B UB=0.50 m/s 60° VA = 1.50 m/s Aarrow_forward8.36 A 1050 kg sports car is moving westbound at 15.0 m/s on a level road when it collides with a 6320 kg truck driving east on the same road at 10.0 m/s. The two vehicles remain locked together after the collision. (a) What is the velocity (magnitude and direction) of the two vehicles just after the collision? (b) At what speed should the truck have been moving so that both it and the car are stopped in the collision? (c) Find the change in kinetic energy of the system of two vehicles for the situ- ations of parts (a) and (b). For which situation is the change in kinetic energy greater in magnitude?arrow_forward
- 8.10 ⚫ A bat strikes a 0.145 kg baseball. Just before impact, the ball is traveling horizontally to the right at 40.0 m/s; when it leaves the bat, the ball is traveling to the left at an angle of 30° above horizontal with a speed of 52.0 m/s. If the ball and bat are in contact for 1.75 ms, find the horizontal and vertical components of the average force on the ball.arrow_forwardL1=5.2m L2=0.5m L3=1.7m L4=0.6m L5=0.5m L6=0.5m V2=5.4m/sarrow_forwardM1=0.45M2=1.9M3=0.59arrow_forward
- I don't know why part A is wrong and can you help me with part B as wellarrow_forwarda 500-n block is dragged along a horizontal surface by an applied force t at an angle of 30.0° (see figure). the coefficient of kinetic friction is uk = 0.400 and the block moves at a constant velocity. what is the magnitude of the applied force T in newtons?arrow_forwarda 500-n block is dragged along a horizontal surface by an applied force t at an angle of 30.0° (see figure). the coefficient of kinetic friction is uk = 0.400 and the block moves at a constant velocity. what is the magnitude of the applied force T in newtons?arrow_forward
- Block A, with a mass of 10 kg, rests on a 30° incline. The coefficient of kinetic friction is 0.20. The attached string is parallel to the incline and passes over a massless, frictionless pulley at the top. Block B, with a mass of 15.0 kg. is attached to the dangling end of the string. What is the acceleration of Block B in m/s? show all steps pleasearrow_forwardWhen current is flowing through the coil, the direction of the torque can be thought of in two ways. Either as the result of the forces on current carrying wires, or as a magnetic dipole moment trying to line up with an external field (e.g. like a compass). Note: the magnetic moment of a coil points in the direction of the coil's magnetic field at the center of the coil. d) Forces: We can consider the left-most piece of the loop (labeled ○) as a short segment of straight wire carrying current directly out of the page at us. Similarly, we can consider the right-most piece of the loop (labeled ) as a short segment straight wire carrying current directly into the page, away from us. Add to the picture below the two forces due to the external magnetic field acting on these two segments. Then describe how these two forces give a torque and determine if the torque acts to rotate the loop clockwise or counterclockwise according to this picture? Barrow_forwardIn each of the following, solve the problem stated. Express your answers in three significant figures. No unit is considered incorrect. 1. For the circuit shown, determine all the currents in each branch using Kirchhoff's Laws. (3 points) 6 5V 2 B C 4 A www 6 VT ww T10 V F E 2. Compute for the total power dissipation of the circuit in previous item. (1 point) 3. Use Maxwell's Mesh to find Ix and VAB for the circuit shown. (3 points) Ix 50 V 20 ww 21x B 4. Calculate all the currents in each branch using Maxwell's Mesh for the circuit shown. (3 points) www 5ი 10 24V 2A 2002 36Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY