Concept explainers
(a)
The speed of the compressional wave.
(a)
Answer to Problem 59AP
The speed of the compressional wave is
Explanation of Solution
Write the expression for compressional wave.
Here,
Conclusion:
Substitute,
Therefore, the speed of the compressional wave is
(b)
The time taken by the back end of the rod to come to stop its motion.
(b)
Answer to Problem 59AP
The time taken by the back end of the rod to come to stop its motion is
Explanation of Solution
Write the expression for the time taken by the signal to stop to reach at the back end.
Here,
Conclusion:
Substitute,
Therefore, the time taken by the back end of the rod to come to stop its motion is
(c)
The distance moved by the back end of the rod at time
(c)
Answer to Problem 59AP
The distance moved by the back end of the rod at time
Explanation of Solution
Let the velocity with which the back end of the rod moving be
Write the equation for distance moved by the back end of the rod.
Conclusion:
Substitute,
Therefore, the distance moved by the back end of the rod at time
(d)
The strain of the rod.
(d)
Answer to Problem 59AP
The strain of the rod is
Explanation of Solution
Strain defined as the change in dimension by original dimension.
Write the expression for strain.
Here,
Conclusion:
Substitute,
Therefore, the strain of the rod is
(e)
The stress of the rod.
(e)
Answer to Problem 59AP
The stress of the rod is
Explanation of Solution
Young’s modulus is the ratio of stress by strain. From the known values of young’s modulus and strain, stress can be determined.
Write the expression for the stress of the rod.
Conclusion:
Substitute,
Therefore, the stress of the rod is
(f)
The maximum impact speed of the rod.
(f)
Answer to Problem 59AP
The maximum impact speed of the rod is
Explanation of Solution
The expression for the speed of the wave is.
Even if the front end strikes on wall, the back end will be in motion, and the time taken for the forward motion is.
Substitute equation (VI) in (VII).
The distance traveled at time
The strain of the rod is.
Substitute, equation (VIII) in (IX).
Substitute, equation (VIII) in (X).
The stress of the rod is.
Substitute, equation (XI) in (XII).
From equation (XIII) the expression for maximum speed, if the above stress is less than the yield stress is.
Conclusion:
Therefore, the maximum impact speed of the rod is
Want to see more full solutions like this?
Chapter 17 Solutions
Physics for Scientists and Engineers With Modern Physics
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Can you help me solve these questions please so i can see how to do itarrow_forwardHow can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning