![Physics for Scientists & Engineers with Modern Physics [With Access Code]](https://www.bartleby.com/isbn_cover_images/9780321712592/9780321712592_largeCoverImage.gif)
Physics for Scientists & Engineers with Modern Physics [With Access Code]
4th Edition
ISBN: 9780321712592
Author: GIANCOLI
Publisher: Pearson College Div
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 55P
To determine
The number of molecules at certain pressure.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure.
A
Both spheres have the same charge of 6.80 nC, and are in static equilibrium when
=
4.95°. What is L (in m)? Assume the cords are massless.
0.150
Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your
Coulomb force equation. m
(b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case?
13.6
☑
Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. nC
A proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 10³ N/C. Ignore any gravitational effects.
(a) Find the time interval required for the proton to travel 6.00 cm horizontally.
1.15e-7
☑
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. ns
(b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.)
5.33e-3
☑
Your response is off by a multiple of ten. mm
(c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally.
| ↑ +
jkm/s
A proton moves at 5.20 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 103 N/C. Ignore any gravitational effects.
(a) Find the time interval required for the proton to travel 6.00 cm horizontally.
(b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.)
Chapter 17 Solutions
Physics for Scientists & Engineers with Modern Physics [With Access Code]
Ch. 17.2 - Prob. 1AECh. 17.4 - Prob. 1BECh. 17.5 - How much space would you allow between the...Ch. 17.7 - CHAPTER-OPENING QUESTIONGuess now! A hot-air...Ch. 17.7 - An ideal gas is contained in a steel sphere at...Ch. 17.8 - What is the volume of 1.00 mol of ideal gas at 546...Ch. 17.8 - At 20C, would there be (a) more, (b) less, or (c)...Ch. 17 - Prob. 1QCh. 17 - Name several properties of materials that could be...Ch. 17 - Which is larger, 1 C or 1 F?
Ch. 17 - If system A is in equilibrium with system B, but B...Ch. 17 - Suppose system C is not in equilibrium with system...Ch. 17 - In the relation = 0 T, should 0 be the initial...Ch. 17 - A flat bimetallic strip consists of a strip of...Ch. 17 - Long steam pipes that are fixed at the ends often...Ch. 17 - A flat uniform cylinder of lead floats in mercury...Ch. 17 - Prob. 10QCh. 17 - Prob. 11QCh. 17 - The units for the coefficients of expansion are...Ch. 17 - When a cold mercury-in-glass thermometer is first...Ch. 17 - The principal virtue of Pyrex glass is that its...Ch. 17 - Will a grandfather clock, accurate at 20C, run...Ch. 17 - Freezing a can of soda will cause its bottom and...Ch. 17 - Why might you expect an alcohol-in-glass...Ch. 17 - Will the buoyant force on an aluminum sphere...Ch. 17 - Prob. 19QCh. 17 - From a practical point of view, does it really...Ch. 17 - A ship loaded in sea water at 4C later sailed up a...Ch. 17 - How does the number of atoms in a 21.5-g gold ring...Ch. 17 - How many atoms are there in a 3.4-g copper penny?Ch. 17 - (a) Room temperature is often taken to be 68F....Ch. 17 - Among the highest and lowest natural air...Ch. 17 - Prob. 5PCh. 17 - (II) In an alcohol-in-glass thermometer, the...Ch. 17 - The Eiffel Tower (Fig. 1719) is built of wrought...Ch. 17 - A concrete highway is built of slabs 12m long...Ch. 17 - Prob. 9PCh. 17 - To what temperature would you have to heat a brass...Ch. 17 - Prob. 11PCh. 17 - At a given latitude, ocean water in the so-called...Ch. 17 - (II) To make a secure fit, rivets that are larger...Ch. 17 - A uniform rectangular plate of length and width w...Ch. 17 - (II) An aluminum sphere is 8.75 cm in diameter....Ch. 17 - Prob. 16PCh. 17 - (II) It is observed that 55.50 mL of water at 20C...Ch. 17 - (II) (a) A brass plug is to be placed in a ring...Ch. 17 - (II) If a fluid is contained in a long narrow...Ch. 17 - Prob. 20PCh. 17 - (II) Wine bottles are never completely filled: a...Ch. 17 - (III) (a) Determine a formula for the change in...Ch. 17 - (III) The pendulum in a grandfather clock is made...Ch. 17 - Prob. 24PCh. 17 - Prob. 25PCh. 17 - (II) (a) A horizontal steel 1-beam of...Ch. 17 - (III) A barrel of diameter 134.122 cm at 20C is to...Ch. 17 - (I) What are the following temperatures on the...Ch. 17 - (I) Absolute zero is what temperature on the...Ch. 17 - (II) Typical temperatures in the interior of the...Ch. 17 - Prob. 31PCh. 17 - Prob. 32PCh. 17 - Prob. 33PCh. 17 - Prob. 34PCh. 17 - (II) A stoppered test tube traps 25.0cm3 of air at...Ch. 17 - Prob. 36PCh. 17 - Prob. 37PCh. 17 - (II) A scuba tank is filled with air to a pressure...Ch. 17 - Prob. 39PCh. 17 - Prob. 40PCh. 17 - Prob. 41PCh. 17 - Prob. 42PCh. 17 - Prob. 43PCh. 17 - Prob. 44PCh. 17 - Prob. 45PCh. 17 - (II) You buy an airtight bag of potato chips...Ch. 17 - (II) A typical scuba tank, when fully charged,...Ch. 17 - Prob. 48PCh. 17 - (III) Compare the value for the density of water...Ch. 17 - (III) An air bubble at the bottom of a lake 37.0 m...Ch. 17 - Prob. 51PCh. 17 - Prob. 52PCh. 17 - (II) What is the pressure in a region of outer...Ch. 17 - Prob. 54PCh. 17 - Prob. 55PCh. 17 - Prob. 56PCh. 17 - Prob. 57PCh. 17 - Prob. 58PCh. 17 - Prob. 59PCh. 17 - Prob. 60PCh. 17 - Prob. 61PCh. 17 - Prob. 62GPCh. 17 - A precise steel tape measure has been calibrated...Ch. 17 - Prob. 64GPCh. 17 - The gauge pressure in a helium gas cylinder is...Ch. 17 - If a rod of original length 1 has its temperature...Ch. 17 - Prob. 67GPCh. 17 - Prob. 68GPCh. 17 - A house has a volume of 870 m3. (a) What is the...Ch. 17 - Assume that in an alternate universe, the laws of...Ch. 17 - An iron cube floats in a bowl of liquid mercury at...Ch. 17 - (a) The tube of a mercury thermometer has an...Ch. 17 - From the known value of atmospheric pressure at...Ch. 17 - Estimate the percent difference in the density of...Ch. 17 - Prob. 75GPCh. 17 - A helium balloon, assumed to be a perfect sphere,...Ch. 17 - A standard cylinder of oxygen used in a hospital...Ch. 17 - A brass lid screws tightly onto a glass jar at...Ch. 17 - The density of gasoline at 0C is 0.68 103 kg/m3....Ch. 17 - A helium balloon has volume V0 and temperature T0...Ch. 17 - The first length standard, adopted in the...Ch. 17 - A scuba tank when fully charged has a pressure of...Ch. 17 - A temperature controller, designed to work in a...Ch. 17 - Snorkelers breathe through short tubular snorkels...Ch. 17 - (III) You have a vial of an unknown liquid which...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The figure below shows the electric field lines for two charged particles separated by a small distance. 92 91 (a) Determine the ratio 91/92. 1/3 × This is the correct magnitude for the ratio. (b) What are the signs of q₁ and 92? 91 positive 92 negative ×arrow_forwardPlease help me solve this one more detail, thanksarrow_forwardA dielectric-filled parallel-plate capacitor has plate area A = 20.0 ccm2 , plate separaton d = 10.0 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 12.5 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Find the energy U1 of the dielectric-filled capacitor. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2 of the capacitor at the moment when the capacitor is half-filled with the dielectric. The capacitor is now disconnected from the battery, and the dielectric plate is slowly removed the rest of the way out of the capacitor. Find the new energy of the capacitor, U3. In the process of removing the remaining portion of the dielectric from the disconnected capacitor, how much work W is done by the external agent acting on the dielectric?arrow_forward
- In (Figure 1) C1 = 6.00 μF, C2 = 6.00 μF, C3 = 12.0 μF, and C4 = 3.00 μF. The capacitor network is connected to an applied potential difference Vab. After the charges on the capacitors have reached their final values, the voltage across C3 is 40.0 V. What is the voltage across C4? What is the voltage Vab applied to the network? Please explain everything in steps.arrow_forwardI need help with these questions again. A step by step working out with diagrams that explains more clearlyarrow_forwardIn a certain region of space the electric potential is given by V=+Ax2y−Bxy2, where A = 5.00 V/m3 and B = 8.00 V/m3. Calculate the direction angle of the electric field at the point in the region that has cordinates x = 2.50 m, y = 0.400 m, and z = 0. Please explain. The answer is not 60, 120, or 30.arrow_forward
- An infinitely long line of charge has linear charge density 4.00×10−12 C/m . A proton (mass 1.67×10−−27 kg, charge +1.60×10−19 C) is 18.0 cm from the line and moving directly toward the line at 4.10×103 m/s . How close does the proton get to the line of charge?arrow_forwardat a certain location the horizontal component of the earth’s magnetic field is 2.5 x 10^-5 T due north A proton moves eastward with just the right speed so the magnetic force on it balances its weight. Find the speed of the proton.arrow_forwardExample In Canada, the Earth has B = 0.5 mT, pointing north, 70.0° below the horizontal. a) Find the magnetic force on an oxygen ion (O) moving due east at 250 m/s b) Compare the |FB| to |FE| due to Earth's fair- weather electric field (150 V/m downward).arrow_forward
- Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 2.20 µC, and L = 0.810 m). Calculate the total electric force on the 7.00-µC charge. What is the magnitude , what is the direction?arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 9.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. (b) Imagine adding electrons to the pin until the negative charge has the very large value 2.00 mC. How many electrons are added for every 109 electrons already present?arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 13.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning


Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning