The free energy change, ∆ G , for a process at constant temperature and pressure is related to ∆ S univ and reflects the spontaneity of the process. How is ∆ G related to ∆ S univ ? When is a process spontaneous? Nonspontaneous? At equilibrium? ∆ G is a composite term composed of ∆ H , T, and ∆ S . What is the ∆ G equation? Give the four possible sign combinations for ∆H and ∆ S . What temperatures are required for each sign combination to yield a spontaneous process? If ∆ G is positive, what does it say about the reverse process? How does the ∆ G = ∆ H − T∆S equation reduce when at the melting-point temperature of a solid-to-liquid phase change or at the boiling-point temperature of a liquid-to-gas phase change? What is the sign of ∆ G for the solid-to-liquid phase change at temperatures above the freezing point? What is the sign of ∆ G for the liquid-to-gas phase change at temperatures below the boiling point?
The free energy change, ∆ G , for a process at constant temperature and pressure is related to ∆ S univ and reflects the spontaneity of the process. How is ∆ G related to ∆ S univ ? When is a process spontaneous? Nonspontaneous? At equilibrium? ∆ G is a composite term composed of ∆ H , T, and ∆ S . What is the ∆ G equation? Give the four possible sign combinations for ∆H and ∆ S . What temperatures are required for each sign combination to yield a spontaneous process? If ∆ G is positive, what does it say about the reverse process? How does the ∆ G = ∆ H − T∆S equation reduce when at the melting-point temperature of a solid-to-liquid phase change or at the boiling-point temperature of a liquid-to-gas phase change? What is the sign of ∆ G for the solid-to-liquid phase change at temperatures above the freezing point? What is the sign of ∆ G for the liquid-to-gas phase change at temperatures below the boiling point?
Solution Summary: The author explains the terms associated with thermodynamics, such as system, surrounding, entropy, spontaneity, and many more.
The free energy change, ∆G, for a process at constant temperature and pressure is related to ∆Suniv and reflects the spontaneity of the process. How is ∆G related to ∆Suniv? When is a process spontaneous? Nonspontaneous? At equilibrium? ∆G is a composite term composed of ∆H, T, and ∆S. What is the ∆G equation? Give the four possible sign combinations for ∆H and ∆S. What temperatures are required for each sign combination to yield a spontaneous process? If ∆G is positive, what does it say about the reverse process? How does the ∆G = ∆H − T∆S equation reduce when at the melting-point temperature of a solid-to-liquid phase change or at the boiling-point temperature of a liquid-to-gas phase change? What is the sign of ∆G for the solid-to-liquid phase change at temperatures above the freezing point? What is the sign of ∆G for the liquid-to-gas phase change at temperatures below the boiling point?
The table includes macrostates characterized by 4 energy levels (&) that are
equally spaced but with different degrees of occupation.
a) Calculate the energy of all the macrostates (in joules). See if they all have
the same energy and number of particles.
b) Calculate the macrostate that is most likely to exist. For this macrostate,
show that the population of the levels is consistent with the Boltzmann
distribution.
macrostate 1 macrostate 2 macrostate 3
ε/k (K) Populations
Populations
Populations
300
5
3
4
200
7
9
8
100
15
17
16
0
33
31
32
DATO: k = 1,38×10-23 J K-1
Don't used Ai solution
In an experiment, the viscosity of water was measured at different
temperatures and the table was constructed from the data obtained.
a) Calculate the activation energy of viscous flow (kJ/mol).
b) Calculate the viscosity at 30°C.
T/°C
0
20
40
60
80
η/cpoise 1,972 1,005 0,656 0,469 0,356
General, Organic, and Biological Chemistry - 4th edition
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY