
University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 4CQ
How do sound vibrations of atoms differ from thermal motion?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
How does torque differ from force?
An electron and a proton are each moving at 755 km/s in perpendicular paths as shown in (Figure 1). At the instant when they are at the positions shown, find the magnitude and direction of the total magnetic field they produce at the origin. Find the magnitude and direction of the magnetic field the electron produces at the location of the proton. Find the magnitude and direction of the total magnetic and electric force that the electron exerts on the proton. Please explain all steps
An electron and a proton are each moving at 755 km/s in perpendicular paths as shown in (Figure 1). At the instant when they are at the positions shown, find the magnitude and direction of the total magnetic field they produce at the origin. Find the magnitude and direction of the magnetic field the electron produces at the location of the proton. Find the magnitude and direction of the total magnetic and electric force that the electron exerts on the proton. Please explain all steps
Chapter 17 Solutions
University Physics Volume 1
Ch. 17 - Check Your Understanding Imagine you observe two...Ch. 17 - Check Your Understanding Identify common sounds at...Ch. 17 - Check Your Understanding Describe how amplitude is...Ch. 17 - Check Your Understanding If you walk around two...Ch. 17 - Check Your Understanding Describe how...Ch. 17 - Check Your Understanding How is it possible to use...Ch. 17 - Check Your Understanding You observe two musical...Ch. 17 - Check Your Understanding What would happen if more...Ch. 17 - Check Your Understanding Describe a situation in...Ch. 17 - What is the difference between sound and hearing?
Ch. 17 - You will learn that light is an electromagnetic...Ch. 17 - Sound waves can be modeled as a change in...Ch. 17 - How do sound vibrations of atoms differ from...Ch. 17 - When sound passes from one medium to another where...Ch. 17 - A popular party trick is to inhale helium and...Ch. 17 - You may have used a sonic range finder in lab to...Ch. 17 - The sonic range finder discussed in the preceding...Ch. 17 - Six members of a synchronized swim team wear...Ch. 17 - A community is concerned about a plan to bring...Ch. 17 - You are given two wind instruments of identical...Ch. 17 - What is the difference between an overtone and a...Ch. 17 - Two identical columns, open at both ends, are in...Ch. 17 - How does an unamplified guitar produce sounds so...Ch. 17 - Consider three pipes of the same length (L). Pipe...Ch. 17 - Pipe A has a length L and is open at both ends....Ch. 17 - A string is tied between two lab posts a distance...Ch. 17 - Two speakers are attached to variable-frequency...Ch. 17 - The label has been scratched off a tuning fork and...Ch. 17 - Referring to the preceding question, if you had...Ch. 17 - A “showy” custom-built car has two brass horns...Ch. 17 - Is the Doppler shift real or just a sensory...Ch. 17 - Three stationary observers observe the Doppler...Ch. 17 - Shown below is a stationary source and moving...Ch. 17 - Prior to 1980, conventional radar was used by...Ch. 17 - What is the difference between a sonic boom and a...Ch. 17 - Due to efficiency considerations related to its...Ch. 17 - When you hear a sonic boom, you often cannot see...Ch. 17 - Consider a sound wave modeled with the equation...Ch. 17 - Consider a sound wave moving through the air...Ch. 17 - Consider a diagnostic ultrasound of frequency 5.00...Ch. 17 - A sound wave is modeled as...Ch. 17 - A sound wave is modeled with the wave function...Ch. 17 - The displacement of the air molecules in sound...Ch. 17 - A speaker is placed at the opening of a long...Ch. 17 - A 250-Hz tuning fork is struck and begins to...Ch. 17 - A sound wave produced by an ultrasonic transducer,...Ch. 17 - Porpoises emit sound waves that they use for...Ch. 17 - Bats use sound waves to catch insects. Bats can...Ch. 17 - A bat sends of a sound wave 100 kHz and the sound...Ch. 17 - Consider the graph shown below of a compression...Ch. 17 - Consider the graph in the preceding problem of a...Ch. 17 - A guitar string oscillates at a frequency of 100...Ch. 17 - When poked by a spear, an operatic soprano lets...Ch. 17 - What frequency sound has a 0.10-m wavelength when...Ch. 17 - Calculate the speed of sound on a day when a...Ch. 17 - (a) What is the speed of sound in a medium where a...Ch. 17 - Show that the speed of sound in 20.0°C air is 343...Ch. 17 - Air temperature in the Sahara Desert can reach...Ch. 17 - Dolphins make sounds in air and water. What is the...Ch. 17 - A sonar echo returns to a submarine 1.20 s after...Ch. 17 - (a) If a submarine’s sonar can measure echo times...Ch. 17 - Ultrasonic sound waves are often used in methods...Ch. 17 - A physicist at a fireworks display times the lag...Ch. 17 - During a 4th of July celebration, an M80 firework...Ch. 17 - The density of a sample of water is =998.00kg/m3...Ch. 17 - Suppose a bat uses sound echoes to locate its...Ch. 17 - What is the intensity in watts per meter squared...Ch. 17 - The warning tag on a lawn mower states that it...Ch. 17 - A sound wave traveling in air has a pressure...Ch. 17 - What intensity level does the sound in the...Ch. 17 - What sound intensity level in dB is produced by...Ch. 17 - What is the decibel level of a sound that is twice...Ch. 17 - What is the intensity of a sound that has a level...Ch. 17 - People with good hearing can perceive sounds as...Ch. 17 - If a large housefly 3.0 m away from you makes a...Ch. 17 - Ten cars in a circle at a boom box competition...Ch. 17 - The amplitude of a sound wave is measured in terms...Ch. 17 - If a sound intensity level of 0 dB at 1000 Hz...Ch. 17 - An 8-hour exposure to a sound intensity level of...Ch. 17 - Sound is more effectively transmitted into a...Ch. 17 - Loudspeakers can produce intense sounds with...Ch. 17 - The factor of 10-12 in the range of intensities to...Ch. 17 - What are the closest frequencies to 500 Hz that an...Ch. 17 - YY13Can you tell that your roommate turned up the...Ch. 17 - If a woman needs an amplification of 5.0105 times...Ch. 17 - A person has a hearing threshold 10 dB above...Ch. 17 - (a) What is the fundamental frequency of a...Ch. 17 - What is the length of a tube that has a...Ch. 17 - The ear canal resonates like a tube closed at one...Ch. 17 - Calculate the first overtone in an ear canal,...Ch. 17 - A crude approximation of voice production is to...Ch. 17 - A 4.0-m-long pipe, open at one end and closed at...Ch. 17 - A 4.0-m-long pipe, open at both ends, is placed in...Ch. 17 - A nylon guitar string is fixed between two lab...Ch. 17 - A 512-Hz tuning fork is struck and placed next to...Ch. 17 - Students in a physics lab are asked to find the...Ch. 17 - If a wind instrument, such as a tuba, has a...Ch. 17 - What are the first three overtones of a bassoon...Ch. 17 - How long must a flute be in order to have a...Ch. 17 - What length should an oboe have to produce a...Ch. 17 - (a) Find the length of an organ pipe closed at one...Ch. 17 - An organ pipe (L=3.00m) is closed at both ends....Ch. 17 - An organ pipe (L=3.00m) is closed at one end....Ch. 17 - A sound wave of a frequency of 2.00 kHz is...Ch. 17 - Consider the sound created by resonating the tube...Ch. 17 - A student holds an 80.00-cm lab pole one quarter...Ch. 17 - A string on the violin has a length of 24.00 cm...Ch. 17 - By what fraction will the frequencies produced by...Ch. 17 - What beat frequencies are present: (a) If the...Ch. 17 - What beat frequencies result if a piano hammer...Ch. 17 - A piano tuner hears a beat every 2.00 s when...Ch. 17 - Two identical strings, of identical lengths of...Ch. 17 - A piano tuner uses a 512-Hz tuning fork to tune a...Ch. 17 - A string with a linear mass density of =0.0062...Ch. 17 - A car has two horns, one emitting a frequency of...Ch. 17 - The middle C hammer of a piano hits two strings,...Ch. 17 - Two tuning forks having frequencies of 460 and 464...Ch. 17 - Twin jet engines on an airplane are producing an...Ch. 17 - Three adjacent keys on a piano (F, F-sharp, and G)...Ch. 17 - (a) What frequency is received by a person...Ch. 17 - (a) At an air show a jet flies directly toward the...Ch. 17 - What frequency is received by a mouse just before...Ch. 17 - A spectator at a parade receives an 888-Hz tone...Ch. 17 - A commuter train blows its 200-Hz horn as it...Ch. 17 - Can you perceive the shift in frequency produced...Ch. 17 - Two eagles fly directly toward one another, the...Ch. 17 - Student A runs down the hallway of the school at a...Ch. 17 - An ambulance with a siren (f=1.00kHz) blaring is...Ch. 17 - The frequency of the siren of an ambulance is 900...Ch. 17 - What is the minimum speed at which a source must...Ch. 17 - An airplane is flying at Mach 1.50 at an altitude...Ch. 17 - A jet flying at an altitude of 8.50 km has a speed...Ch. 17 - The shock wave off the front of a fighter jet has...Ch. 17 - A plane is flying at Mach 1.2, and an observer on...Ch. 17 - A bullet is fired and moves at a speed of 1342...Ch. 17 - A speaker is placed at the opening of a long...Ch. 17 - An airplane moves at Mach 1.2 and produces a shock...Ch. 17 - A 0.80-m-long tube is opened at both ends. The air...Ch. 17 - A tube filled with water has a valve at the bottom...Ch. 17 - Consider the following figure. The length of the...Ch. 17 - Early Doppler shift experiments were conducted...Ch. 17 - Two cars move toward one another, both sounding...Ch. 17 - Student A runs after Student B. Student A carries...Ch. 17 - Suppose that the sound level from a source is 75...Ch. 17 - The Doppler shift for a Doppler radar is found by...Ch. 17 - A stationary observer hears a frequency of 1000.00...Ch. 17 - A flute plays a note with a frequency of 600 Hz....Ch. 17 - Two sound speakers are separated by a distance d,...Ch. 17 - Consider the beats shown below. This is a graph of...Ch. 17 - Two speakers producing the same frequency of sound...Ch. 17 - A string has a length of 1.5 m, a linear mass...Ch. 17 - A string (=0.006kgm,L=1.50m) is fixed at both ends...Ch. 17 - A string has a linear mass density µ, a length L,...Ch. 17 - A string has a linear mass density =0.007 kg/m, a...Ch. 17 - A speaker powered by a signal generator is used to...Ch. 17 - A string on the violin has a length of 23.00 cm...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
WRITE ABOUT A THEME: INTERACTIONS In a short essay (100-150 words), identify the factor or factors in Figure 53...
Campbell Biology (11th Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
Answer the following questions for each compound: a. How many signals are in its 13C NMR spectrum? b. Which sig...
Organic Chemistry (8th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
20.1 Compare and contrast the terms in each of the following pairs:
population and gene pool
random mating and ...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the series M8 3 ཱ|༤༠ n=0 5n a. Find the general formula for the sum of the first k terms. Your answer should be in terms of k. Sk=3 1 5 5 k b. The sum of a series is defined as the limit of the sequence of partial sums, which means k 3 5n 1- = lim 3 k→∞ n=0 4 15 4 c. Select all true statements (there may be more than one correct answer): A. The series is a geometric series. B. The series converges. C. The series is a telescoping series (i.e., it is like a collapsible telescope). D. The series is a p-series.arrow_forwardA uniform ladder of length L and weight w is leaning against a vertical wall. The coefficient of static friction between the ladder and the floor is the same as that between the ladder and the wall. If this coefficient of static friction is μs : 0.535, determine the smallest angle the ladder can make with the floor without slipping. ° = A 14.0 m uniform ladder weighing 480 N rests against a frictionless wall. The ladder makes a 55.0°-angle with the horizontal. (a) Find the horizontal and vertical forces (in N) the ground exerts on the base of the ladder when an 850-N firefighter has climbed 4.10 m along the ladder from the bottom. horizontal force magnitude 342. N direction towards the wall ✓ vertical force 1330 N up magnitude direction (b) If the ladder is just on the verge of slipping when the firefighter is 9.10 m from the bottom, what is the coefficient of static friction between ladder and ground? 0.26 × You appear to be using 4.10 m from part (a) for the position of the…arrow_forwardYour neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop, ma when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.10 × 103 kg and it can carry five passengers of average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.45 m. The center of mass of the car carrying five passengers is dCM = 2.25 m behind the front wheels and hcm = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μk 0.840. (Caution: The braking automobile is not in an inertial reference frame. Enter the magnitude of the force in N.)…arrow_forward
- John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The handles make an angle of 0 = 17.5° with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force of 403 N is exerted at the center of the wheel, which has a radius of 16.0 cm. Assume the brick remains fixed and does not slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel. (Choose the positive x-axis to be pointing to the right.) (a) What force (in N) must John apply along the handles to just start the wheel over the brick? (No Response) N (b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on the wheel just as the wheel begins to lift over the brick? magnitude (No Response) KN direction (No Response) ° clockwise from the -x-axisarrow_forwardAn automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 1.10 × 103 kg/m³. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of the sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.600 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that is, its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 19.2 cm. What is the moment of inertia (in kg. m²) of the tire about an axis perpendicular to the page through its center? 2.18 x Sidewall 33.0 cm 30.5 cm 16.5 cm Treadarrow_forwardA person on horseback is on a drawbridge which is at an angle = 20.0° above the horizontal, as shown in the figure. The center of mass of the person-horse system is d = 1.35 m from the end of the bridge. The bridge is l = 7.00 m long and has a mass of 2,300 kg. A cable is attached to the bridge 5.00 m from the frictionless hinge and to a point on the wall h = 12.0 m above the bridge. The mass of person plus horse is 1,100 kg. Assume the bridge is uniform. Suddenly (and most unfortunately for the horse and rider), the ledge where the bridge usually rests breaks off, and at the same moment the cable snaps and the bridge swings down until it hits the wall. ÚI MAJI A TLA MAJA AUTA (a) Find the angular acceleration (magnitude, in rad/s²) of the bridge once it starts to move. 2.22 Use the rotational analogue of Newton's second law. The drawbridge can be modeled as a rod, with rotation axis about one end. rad/s² (b) How long (in s) does the horse and rider stay in contact with the bridge…arrow_forward
- Two long, parallel wires carry currents of I₁ = 2.70 A and I2 = 4.85 A in the directions indicated in the figure below, where d = 22.0 cm. (Take the positive x direction to be to the right.) 12 (a) Find the magnitude and direction of the magnetic field at a point midway between the wires. magnitude direction 3.91 270 μπ ⚫ counterclockwise from the +x axis (b) Find the magnitude and direction of the magnetic field at point P, located d = 22.0 cm above the wire carrying the 4.85-A current. magnitude direction Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. μT The response you submitted has the wrong sign.° counterclockwise from the +x axisarrow_forwardO Macmillan Learning The mass of a particular eagle is twice that of a hunted pigeon. Suppose the pigeon is flying north at Vi2 = 16.1 m/s when the eagle swoops down, grabs the pigeon, and flies off. At the instant right before the attack, the eagle is flying toward the pigeon at an angle 0 = 64.3° below the horizontal and a speed of Vi,1 = 37.9 m/s. What is the speed of of the eagle immediately after it catches its prey? What is the magnitude & of the angle, measured from horizontal, at which the eagle is flying immediately after the strike? Uf = II x10 TOOLS Vi.1 Vi,2 m/sarrow_forwardWhat is the equivalent resistance if you connect a 1.7 Ohm, a 9.3 Ohm, and a 22 Ohm resistor in series? (Give your answer as the number of Ohms.)arrow_forward
- Three wires meet at a junction. One wire carries a current of 5.2 Amps into the junction, and a second wire carries a current of 3.7 Amps out of the junction. What is the current in the third wire? Give your answer as the number of Amps, and give a positive number if the current in that wire flows out of the junction, or a negative number if the current in that wire flows into the junction.arrow_forwardWhat is the equivalent resistance if you connect a 4.5 Ohm, a 6.8 Ohm, and a 15 Ohm resistor in parallel? (Give your answer as the number of Ohms.)arrow_forwardSuppose a heart defibrillator passes 10.5 Amps of current through a patient's torso for 5.0 x 10-3 seconds in order to restore a regular heartbeat. The voltage across the defibrillator is 9800 volts for the entire time that current is flowing. If 7.25 kg of body tissue is involved, with a specific heat of 3500 J/(kg°C), then what is the resulting temperature increase of the person's torso? (Give your answer as the number of degrees C.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Supersonic Speed and Shock Waves; Author: AK LECTURES;https://www.youtube.com/watch?v=HfSSi3KJZB0;License: Standard YouTube License, CC-BY