Concept explainers
(a)
The pressure at the center of sun.
Given:
Temperature at the center of the gas is 1 × 10 7 K .
Density at the center of sun is 1 × 10 5 kg / m 3 .
Formula used:
Write the expression for the ideal gas.
P V = n R T
Here, P is the pressure, V is the volume, n is the number of moles, R is the gas constant and T is the temperature.
Solve the above equation for P .
P = n R T V ........ (1)
Write the expression for the number of moles.
n p = m p M p ........ (2)
Here, n p is the number of moles of protons, m p is the mass of protons and M p is the molar ma of proton.
Calculation:
Substitute 10 5 kg for m p and 10 − 3 kg for M p in equation (2).
n p = 10 5 kg 10 − 3 kg n p = 10 8
The number of electrons is 2 × 10 8 .
Substitute 2 × 10 8 mol for n , 8.314 J / mol ⋅ K for R , 10 7 K for T and 1 m 3 for V in equation (1).
P = ( 2 × 10 8 ) ( 8.314 J / mol ⋅ K ) 10 7 K 1 m 3 P = 2 × 10 11 atm
Conclusion:
The pressure is 2 × 10 11 atm .
The pressure at the center of sun.
Given:
Temperature at the center of the gas is
Density at the center of sun is
Formula used:
Write the expression for the ideal gas.
Here,
Solve the above equation for
Write the expression for the number of moles.
Here,
Calculation:
Substitute
The number of electrons is
Substitute
Conclusion:
The pressure is
(a)
Explanation of Solution
Given:
Temperature at the center of the gas is
Density at the center of sun is
Formula used:
Write the expression for the ideal gas.
Here,
Solve the above equation for
Write the expression for the number of moles.
Here,
Calculation:
Substitute
The number of electrons is
Substitute
Conclusion:
The pressure is
(b)
The root mean square speed of electron and proton at the center of the sun.
(b)
Explanation of Solution
Given:
TheTemperature at the center of the gas is
Formula used:
Write the expression for the root mean square speed of the molecule.
Here,
Calculation:
Substitute
Substitute
Conclusion:
The rms speed of proton and electron at the center of sun is
Want to see more full solutions like this?
Chapter 17 Solutions
Physics for Scientists and Engineers, Vol. 1
- 3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forwardNo chatgpt pls will upvotearrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. Barrow_forward
- Hi can u please solvearrow_forward6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forward
- Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardGood explanation it sure experts solve it.arrow_forward
- No chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forwardNo chatgpt pls will upvotearrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning