
Concept explainers
(a)
To determine: The reason of using CoA derivatives rather than free fatty acids in experiments by scientists.
Introduction:
Trans fats are those unsaturated fats that have trans double bonds. The β-oxidation of fatty acid is a catabolic process in which fatty acid molecules are broken down to release acetyl-CoA. To investigate the effect of trans fats on health, scientists presented a model trans fatty acid whose cis isomer was processed differently.
(a)

Explanation of Solution
Explanation:
To explore the difference between same sized isomers of cis and trans beta oxidation, scientists used related fatty acids of 18 carbons. They incubated derivatives of coenzyme A of each acid along with rat liver mitochondria and separated remaining derivatives of coenzyme A in each mixture through high-performance liquid chromatography (HPLC).
In cytoplasm, free fatty acids are usually transformed into their coenzyme A derivatives before being transported into mitochondria in the form of
(b)
To determine: The reason why no lower molecular weight CoA derivatives were found in the reaction with stearoyl-CoA.
Introduction:
To investigate the effect of trans fats on health, scientists presented a model trans fatty acid whose cis isomer was processed differently. To explore the difference between same sized isomers of cis and tarns beta oxidation, they used three related fatty acids of 18 carbons: stearoyl-CoA, oleoyl-CoA, andelaidoyl-CoA.
(b)

Explanation of Solution
Explanation:
When scientists incubated derivatives of coenzyme A of each acid along with rat liver mitochondria and separated remaining derivatives of coenzyme A in each mixture through HPLC, they found that no CoA derivatives of low molecular weight was obtained by the reaction with stearoyl-CoA .
Through beta oxidation, stearoyl-CoA is converted into nine molecules of acetyl-CoA. All the intermediate molecules reacted immediately and thus are not observed at detectable levels.
(c)
To determine: The round of beta oxidation which would be required to convert the oleoyl-CoA and elaidoyl-CoA to cis-∆5-tetradecenoyl-CoA and trans-∆5-tetradecenoyl-CoA, respectively.
Introduction:
The effect of trans fats on health was investigated by some scientists. They presented a model of trans fatty acid whose cis isomer was processed differently. To explore the difference between same sized isomers of cis and tarns beta oxidation, they used three related fatty acids of 18 carbons: stearoyl-CoA, oleoyl-CoA, and elaidoyl-CoA.
(c)

Explanation of Solution
Explanation:
Total two rounds of beta oxidation would be required to convert the 18 carbon oleoyl-CoA and elaidoyl-CoA to 14 carbon compound cis-∆5-tetradecenoyl-CoA andtrans-∆5-tetradecenoyl-CoA, respectively.
These 18 carbon fatty acids are converted to 14 carbon fatty acids through two rounds of beta oxidation. Each round removes two atoms of carbon from them that leads to release of two molecules of acetyl-CoA.
(d)
To explain: The possible explanation for the observation that “for LCAD, the Km differs dramatically for the cis and trans substrates” in terms of structures of the substrate molecules.
Introduction:
The kinetic parameters of two forms of acetyl-CoA dehydrogenase: LCAD and VLCAD, were measured by Yu and his coworkers. They used three derivatives of coenzyme A of fatty acids: tetradecenoyl-CoA, cis-∆5-tetradecenoyl-CoAand trans-∆5-tetradecenoyl-CoA.
(d)

Explanation of Solution
Explanation:
Scientists measured the kinetic parameters of long-chain acyl-CoA dehydrogenase (LCAD) and very long-chain acyl-CoA dehydrogenase (VLCAD). They observed that for LCAD there is difference between the Km for cis and trans substrates. Km indicates the substrate concentration at which the enzyme achieves half Vmax (maximum
The Km for trans isomers were higher as compared to cis isomers. This is because the structure of cis isomers allows them to bind better to the enzyme as compared to trans isomers. Thus high concentration of trans isomer would be required for similar rate of breakdown.
(e)
To determine: The evidence that support the given assumption “the kinetic parameter of the two enzymes are relevant to the differential processing of these fatty acids only if LCAD or VLCAD reaction is the rate-limiting step in the pathway”.
Introduction:
The kinetic parameters of two forms of acyl-CoA dehydrogenase: LCAD and VLCAD, were measured by scientists. They used three derivatives of coenzyme A of fatty acids: tetradecenoyl-CoA, cis-∆5-tetradecenoyl-CoAandtrans-∆5-tetradecenoyl-CoA.
(e)

Explanation of Solution
Explanation:
When scientists measured the kinetic parameters of LCAD and VLCAD, they made an assumption stating that: “the kinetic parameter of the two enzymes are relevant to the differential processing of these fatty acids only if LCAD or VLCAD reaction is the rate-limiting step in the pathway”.
The evidence that supports this assumption is observed by the different build up of substrates of LCAD and VLCAD. The accumulation of a particular LCAD or VLCAD substrates provides evidence that they are the rate limiting steps in pathway.
(f)
To determine: The way in which the different kinetic parameters explain the different levels of the coenzyme A derivatives found after incubation of rat liver mitochondria with stearoyl-CoA, oleoyl-CoA , and elaidoyl-CoA
Introduction:
To explore the difference between same sized isomers of cis and tarns beta oxidation, scientists used related fatty acids of 18 carbons. They incubated derivatives of coenzyme A of each acid along with rat liver mitochondria and separated remaining derivatives of coenzyme A in each mixture through HPLC.
(f)

Explanation of Solution
Explanation:
The kinetic parameter indicates that trans isomer is not a well substrate for LCAD as compared to cis form. This is because the structure of cis isomers allows them to bind better to the enzyme as compared to trans isomers. The kinetic parameters for LCAD do not show much difference. As trans isomer is not a well substrate it will be accumulated in high levels as compared to cis forms.
(g)
To describe: The pathway that led to extra mitochondrial trans-∆5-tetradecenoic acid and also indicate where in the cell the various transformations take place along with the enzymes that catalyzes the transformations.
Introduction:
Yu and his coworkers determined the substrate specificity of rat’s mitochondrial thioesterase enzyme. This enzymes hydrolyzes acyl-CoA into free fatty acids andCoA. Other researchers suggested that free fatty acids can cross membranes. The scientist’s observed trans-∆5-tetradecenoic acid outside the mitochondria, which was incubated with elaidoyl-CoA.
(g)

Explanation of Solution
Explanation:
The one possible pathway that led to extra mitochondrial trans-∆5-tetradecenoic acid is as follows:
1. Elaidoyl-CoA is found outside the mitochondria and is converted into elaidoyl carnitine by carnitine acyltransferase I enzyme. Later elaidoyl carnitine is transported inside the mitochondria.
2. Elaidoyl carnitine which is now inside mitochondria is converted to elaidoyl-CoA inside the mitochondria by carnitine acyltransferase II enzyme.
3. Elaidoyl-CoA after undergoing two rounds of beta oxidation is converted into 5-trans-tetradecenyl-CoA inside the mitochondria.
4. 5-trans-tetradecenyl-CoA (inside) is converted into 5-trans-tetradecenoic acid (inside mitochondria) through thioesterase enzyme. Finally, 5-trans-tetradecenoic acid which is present inside the mitochondria diffuses out from the mitochondria.
(h)
To determine: The sense in which the statement “trans fats are not broken down by your cells and instead accumulate in your body” is correct and in what sense is it an oversimplification.
Introduction:
Trans fats are those unsaturated fats that have trans double bonds. The β-oxidation of fatty acid is a catabolic process in which fatty acid molecules are broken down to release acetyl-CoA. To investigate the effect of trans fats on health, scientists presented a model trans fatty acid whose cis isomer was processed differently.
(h)

Explanation of Solution
Explanation:
It is correct to say that trans fats are accumulated in the body as the efficiency of trans fat breakdown is very low. Due to which they could leak out of the mitochondria and could accumulate in the body.
It is incorrect to say that cells cannot breakdown trans fats. The rate of their breakdown is much slower than those of cis fats but they are broken down by the cells.
Want to see more full solutions like this?
Chapter 17 Solutions
Lehninger Principles of Biochemistry
- please draw it for me and tell me where i need to modify the structurearrow_forwardPlease help determine the standard curve for my Kinase Activity in Excel Spreadsheet. Link: https://mnscu-my.sharepoint.com/personal/vi2163ss_go_minnstate_edu/_layouts/15/Doc.aspx?sourcedoc=%7B958f5aee-aabd-45d7-9f7e-380002892ee0%7D&action=default&slrid=9b178ea1-b025-8000-6e3f-1cbfb0aaef90&originalPath=aHR0cHM6Ly9tbnNjdS1teS5zaGFyZXBvaW50LmNvbS86eDovZy9wZXJzb25hbC92aTIxNjNzc19nb19taW5uc3RhdGVfZWR1L0VlNWFqNVc5cXRkRm4zNDRBQUtKTHVBQldtcEtWSUdNVmtJMkoxQzl3dmtPVlE_cnRpbWU9eEE2X291ZHIzVWc&CID=e2126631-9922-4cc5-b5d3-54c7007a756f&_SRM=0:G:93 Determine the amount of VRK1 is present 1. Average the data and calculate the mean absorbance for each concentration/dilution (Please over look for Corrections) 2. Blank Correction à Subtract 0 ug/mL blank absorbance from all readings (Please over look for Corrections) 3. Plot the Standard Curve (Please over look for Corrections) 4. Convert VRK1 concentration from ug/mL to g/L 5. Use the molar mass of VRK1 to convert to M and uM…arrow_forwardMacmillan Learning Cholesterol synthesis begins with the formation of mevalonate from acetyl CoA. This process activates mevalonate and converts it to isopentenyl pyrophosphate. Identify the atoms in mevalonate and isopentenyl pyrophosphate that will be labeled from acetyl CoA labeled with 14C in the carbonyl carbon. Place 14C atoms and C atoms to denote which carbon atoms are labeled and which are not labeled. H₂C COA 14C-labeled acetyl-CoA HHH [c] H H OH 014C - OH H HH H Mevalonate CH3 H H 14C H Η H H Incorrect Answer of o -P-O-P-0- Isopentenyl pyrophosphate с Answer Bank 14Carrow_forward
- Draw the reaction between sphingosine and arachidonic acid. Draw out the full structures.arrow_forwardDraw both cis and trans oleic acid. Explain why cis-oleic acid has a melting point of 13.4°C and trans-oleic acid has a melting point of 44.5°C.arrow_forwardDraw the full structure of the mixed triacylglycerol formed by the reaction of glycerol and the fatty acids arachidic, lauric and trans-palmitoleic. Draw the line structure.arrow_forward
- Draw out the structure for lycopene and label each isoprene unit. "Where is lycopene found in nature and what health benefits does it provide?arrow_forwardWhat does it mean to be an essential fatty acid? What are the essential fatty acids?arrow_forwardCompare and contrast primary and secondary active transport mechanisms in terms of energy utilisation and efficiency. Provide examples of each and discuss their physiological significance in maintaining ionic balance and nutrient uptake. Rubric Understanding the key concepts (clearly and accurately explains primary and secondary active transport mechanisms, showing a deep understanding of their roles) Energy utilisation analysis ( thoroughly compares energy utilisation in primary and secondary transport with specific and relevant examples Efficiency discussion Use of examples (provides relevant and accurate examples (e.g sodium potassium pump, SGLT1) with clear links to physiological significance. Clarity and structure (presents ideas logically and cohesively with clear organisation and smooth transition between sections)arrow_forward
- 9. Which one of the compounds below is the major organic product obtained from the following reaction sequence, starting with ethyl acetoacetate? 요요. 1. NaOCH2CH3 CH3CH2OH 1. NaOH, H₂O 2. H3O+ 3. A OCH2CH3 2. ethyl acetoacetate ii A 3. H3O+ OH B C D Earrow_forward7. Only one of the following ketones cannot be made via an acetoacetic ester synthesis. Which one is it? Ph کہ A B C D Earrow_forward2. Which one is the major organic product obtained from the following reaction sequence? HO A OH 1. NaOEt, EtOH 1. LiAlH4 EtO OEt 2. H3O+ 2. H3O+ OH B OH OH C -OH HO -OH OH D E .CO₂Etarrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON





