Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 24P
To determine

The frequencies, which would sound the richest because of resonance.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given info: The dimension of the shower stall is 86.0cm×86.0cm×210cm . The range of frequencies of the voices lies from 130Hz to 2000Hz . The speed of the sound in the hot air is 355m/s .

Expression for the fundamental or first harmonic frequency is,

f1=v4L

Here,

v is the velocity of the sound in hot air.

L is the length of the shower stall.

Substitute 355m/s for v and 210cm for L in the above equation.

f1=355m/s4×(210cm)=355m/s4×(210cm×1m100cm)=355m/s4×(2.10m)=42.262Hz

Expression for the third harmonic frequency is,

f3=3v4L

Substitute 355m/s for v and 210cm for L in the above equation.

f3=3×(355m/s)4×(210cm)=3×(355m/s)4×(210cm×1m100cm)=3×(355m/s)4×(2.10m)=126.786Hz

Expression for the fifth harmonic frequency is,

f5=5v4L

Substitute 355m/s for v and 210cm for L in the above equation.

f5=5×(355m/s)4×(210cm)=5×(355m/s)4×(210cm×1m100cm)=5×(355m/s)4×(2.10m)=211.31Hz

Expression for the seventh harmonic frequency is,

f7=7v4L

Substitute 355m/s for v and 210cm for L in the above equation.

f7=7×(355m/s)4×(210cm)=7×(355m/s)4×(210cm×1m100cm)=7×(355m/s)4×(2.10m)=295.834Hz

Expression for the ninth harmonic frequency is,

f9=9v4L

Substitute 355m/s for v and 210cm for L in the above equation.

f9=9×(355m/s)4×(210cm)=9×(355m/s)4×(210cm×1m100cm)=9×(355m/s)4×(2.10m)=380.358Hz

Expression for the eleventh harmonic frequency is,

f11=11v4L

Substitute 355m/s for v and 210cm for L in the above equation.

f11=11×(355m/s)4×(210cm)=11×(355m/s)4×(210cm×1m100cm)=11×(355m/s)4×(2.10m)=464.881Hz

Similarly, for maximum resonance frequency,

fn=(2n+1)v4L

Substitute 2000Hz for fn , 355m/s for v and 210cm for L in the above equation.

2000Hz=(2n+1)×(355m/s)4×(210cm)2000Hz=(2n+1)×(355m/s)4×(210cm×1m100cm)=(2n+1)×(355m/s)4×(210cm×1m100cm)

Simplify further,

2000Hz=(2n+1)×(355m/s)4×(2.10m)n47

For n=47 ,

f47=47×(42.262Hz)=1986.314Hz

Conclusion:

Therefore, the frequencies, which would sound the richest because of resonance, are 211.31Hz , 295.834Hz , 380.358Hz , 464.881Hz up to 1986.314Hz .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Consider the circuit shown in the figure below. (Let R = 12.0 (2.) 25.0 V 10.0 www 10.0 Ω b www 5.00 Ω w R 5.00 Ω i (a) Find the current in the 12.0-0 resistor. 1.95 × This is the total current through the battery. Does all of this go through R? A (b) Find the potential difference between points a and b. 1.72 × How does the potential difference between points a and b relate to the current through resistor R? V
3.90 ... CP A rocket designed to place small payloads into orbit is carried to an altitude of 12.0 km above sea level by a converted airliner. When the airliner is flying in a straight line at a constant speed of 850 km/h, the rocket is dropped. After the drop, the air- liner maintains the same altitude and speed and continues to fly in a straight line. The rocket falls for a brief time, after which its rocket motor turns on. Once its rocket motor is on, the combined effects of thrust and gravity give the rocket a constant acceleration of magnitude 3.00g directed at an angle of 30.0° above the hori- zontal. For reasons of safety, the rocket should be at least 1.00 km in front of the airliner when it climbs through the airliner's alti- tude. Your job is to determine the minimum time that the rocket must fall before its engine starts. You can ignore air resistance. Your answer should include (i) a diagram showing the flight paths of both the rocket and the airliner, labeled at several…
1. In an industrial fabrication process, a fluid, with density p = 800 kg/m and specific heat capacity c = 5000 J/kg-C°, emerges from a tank at a temperature, T, = 400 °C. The fluid then enters a metal pipe with inner radius a = 2.0 cm and outer radius b = 3.0 cm and thermal conductivity k = 180 W/m•C°. Outside the pipe the temperature is fixed at Tout = 15 °C. If the fluid flows at speed v = 8.0 m/s and the length of the pipe is L = 25 m, what is the temperature of the fluid at the end of the pipe? (Answer: 83 °C) please I need to show All work problems step by step

Chapter 17 Solutions

Physics for Scientists and Engineers with Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY
Vibrations of Stretched String; Author: PhysicsPlus;https://www.youtube.com/watch?v=BgINQpfqJ04;License: Standard Youtube License