
Review Question 17.1 To decide whether an object is electrically charged, we need to observe its repulsion from some other objects, not its attraction. Why is attraction insufficient?

The reason behind attraction being an insufficient condition for deciding whether an object is electrically charged or not.
Answer to Problem 1RQ
Solution:
Attraction can exist between a charged and a neutral object also, due to the charging by induction. So, attraction is not sufficient to decide whether the object is charged or not. Repulsion cannot exist because of an induced charge so repulsion is a sufficient condition.
Explanation of Solution
Introduction:
There are various methods of charging an object, such as charging by friction, charging by induction, charging by conduction, and grounding.
Charging by induction is the method in which a neutral object is placed near the charged object and since there are electrons and protons in every atom of an object, they will either attract or repel each other. So, the positive (protons) and negative (electrons) charges that make a nucleus neutral, are separated by the presence of an external charged object. So, on one side there will be negatively charged electrons and on the other side there will be positively charged protons. This is called polarization of the object. The sides near the object of known charge (assume positive) will be of the opposite charge (negative) and vice versa. Neutral objects are attracted towards the charged object irrespective of the fact whether the charge is positive or negative.
Explanation:
Suppose a positively charged object is placed near a metal piece. Since electrons are loosely bound in the atoms of metals, electrons will move towards the face that is near the positively charged object. When electron leaves the atom, the atom will get positively charged. Since the face with the negative charge is near the positively charged object, the metal piece will be attracted towards the positively charged object.
To decide whether an object is electrically charged or not, the object needs to be placed near another object of known charge. If it is repelled by the object, then the first object could be of positive or negative charge. But, if the two objects are attracted to each other, it is not sufficient to decide because a charged object can induce a charge of the opposite sign on the neutral object. It means that the attraction between the objects can exist due to an induced charge. Thus, it will not be possible to decide whether the object was charged prior to the process, or charge has been induced by the second object.
Conclusion:
Therefore, repulsion is a sufficient condition for deciding whether an object is electrically charged or not.
Want to see more full solutions like this?
Chapter 17 Solutions
COLLEGE PHYSICS:VOL.1
Additional Science Textbook Solutions
Applications and Investigations in Earth Science (9th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Microbiology: An Introduction
Campbell Biology: Concepts & Connections (9th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Microbiology: An Introduction
- Solve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardThe spring in the figure has a spring constant of 1300 N/m. It is compressed 17.0 cm, then launches a 200 g block. The horizontal surface is frictionless, but the block’s coefficient of kinetic friction on the incline is 0.200. What distance d does the block sail through the air?arrow_forwardSolve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forward
- Solve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardA 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 28 m/s when a 60 kg skydiver drops out by releasing his grip on the glider. What is the glider's speed just after the skydiver lets go?arrow_forwardPROBLEM 2 A cube of mass m is placed in a rotating funnel. (The funnel is rotating around the vertical axis shown in the diagram.) There is no friction between the cube and the funnel but the funnel is rotating at just the right speed needed to keep the cube rotating with the funnel. The cube travels in a circular path of radius r, and the angle between the vertical and the wall of the funnel is 0. Express your answers to parts (b) and (c) in terms of m, r, g, and/or 0. (a) Sketch a free-body diagram for the cube. Show all the forces acting on it, and show the appropriate coordinate system to use for this problem. (b) What is the normal force acting on the cube? FN=mg58 (c) What is the speed v of the cube? (d) If the speed of the cube is different from what you determined in part (c), a force of friction is necessary to keep the cube from slipping in the funnel. If the funnel is rotating slower than it was above, draw a new free-body diagram for the cube to show which way friction…arrow_forward
- Circular turns of radius r in a race track are often banked at an angle θ to allow the cars to achieve higher speeds around the turns. Assume friction is not present. Write an expression for the tan(θ) of a car going around the banked turn in terms of the car's speed v, the radius of the turn r, and g so that the car will not move up or down the incline of the turn. tan(θ) =arrow_forwardThe character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?arrow_forwardSlinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed with no initial velocity and reaches the floor right as his velocity hits zero again. How high is the bed? What is Woody’s velocity halfway down? Enter just the magnitude of velocity.arrow_forward
- No chatgpt pls will upvotearrow_forwardA positive charge of 91 is located 5.11 m to the left of a negative charge 92. The charges have different magnitudes. On the line through the charges, the net electric field is zero at a spot 2.90 m to the right of the negative charge. On this line there are also two spots where the potential is zero. (a) How far to the left of the negative charge is one spot? (b) How far to the right of the negative charge is the other?arrow_forwardA charge of -3.99 μC is fixed in place. From a horizontal distance of 0.0423 m, a particle of mass 7.31 x 103 kg and charge -9.76 µC is fired with an initial speed of 84.1 m/s directly toward the fixed charge. How far does the particle travel before its speed is zero?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





