COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
2nd Edition
ISBN: 9781319414597
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 1QAP
To determine

The difference between electric potential and electric field..

Expert Solution & Answer
Check Mark

Answer to Problem 1QAP

The electric potential is defined as the electric potential energy per unit charge while the electric field is defined as the electric force per unit charge.

Explanation of Solution

Electric potential and electric field are the two different terms use in electrical. The electric potential is defined as the electric potential energy per unit charge. In other words, electric potential is the required work to move a charge from infinite to a point in an electric field.

The expression for the electric potential is given as,

  V=Uq

However, the electric field is defined as the electric force per unit charge. The direction of electric field is always taken in the direction of force exerted on the positive test charge.

The expression for the electric field is given as,

  E=Fq

Conclusion:

Thus, electric potential is defined as the electric potential energy per unit charge while the electric field is defined as the electric force per unit charge.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Four capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μC
In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?
Four capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor  µC 6.00 µF capacitor  µC 3.00 µF capacitor  µC capacitor C  µC

Chapter 17 Solutions

COLLEGE PHYSICS LL W/ 6 MONTH ACCESS

Ch. 17 - Prob. 11QAPCh. 17 - Prob. 12QAPCh. 17 - Prob. 13QAPCh. 17 - Prob. 14QAPCh. 17 - Prob. 15QAPCh. 17 - Prob. 16QAPCh. 17 - Prob. 17QAPCh. 17 - Prob. 18QAPCh. 17 - Prob. 19QAPCh. 17 - Prob. 20QAPCh. 17 - Prob. 21QAPCh. 17 - Prob. 22QAPCh. 17 - Prob. 23QAPCh. 17 - Prob. 24QAPCh. 17 - Prob. 25QAPCh. 17 - Prob. 26QAPCh. 17 - Prob. 27QAPCh. 17 - Prob. 28QAPCh. 17 - Prob. 29QAPCh. 17 - Prob. 30QAPCh. 17 - Prob. 31QAPCh. 17 - Prob. 32QAPCh. 17 - Prob. 33QAPCh. 17 - Prob. 34QAPCh. 17 - Prob. 35QAPCh. 17 - Prob. 36QAPCh. 17 - Prob. 37QAPCh. 17 - Prob. 38QAPCh. 17 - Prob. 39QAPCh. 17 - Prob. 40QAPCh. 17 - Prob. 41QAPCh. 17 - Prob. 42QAPCh. 17 - Prob. 43QAPCh. 17 - Prob. 44QAPCh. 17 - Prob. 45QAPCh. 17 - Prob. 46QAPCh. 17 - Prob. 47QAPCh. 17 - Prob. 48QAPCh. 17 - Prob. 49QAPCh. 17 - Prob. 50QAPCh. 17 - Prob. 51QAPCh. 17 - Prob. 52QAPCh. 17 - Prob. 53QAPCh. 17 - Prob. 54QAPCh. 17 - Prob. 55QAPCh. 17 - Prob. 56QAPCh. 17 - Prob. 57QAPCh. 17 - Prob. 58QAPCh. 17 - Prob. 59QAPCh. 17 - Prob. 60QAPCh. 17 - Prob. 61QAPCh. 17 - Prob. 62QAPCh. 17 - Prob. 63QAPCh. 17 - Prob. 64QAPCh. 17 - Prob. 65QAPCh. 17 - Prob. 66QAPCh. 17 - Prob. 67QAPCh. 17 - Prob. 68QAPCh. 17 - Prob. 69QAPCh. 17 - Prob. 70QAPCh. 17 - Prob. 71QAPCh. 17 - Prob. 72QAPCh. 17 - Prob. 73QAPCh. 17 - Prob. 74QAPCh. 17 - Prob. 75QAPCh. 17 - Prob. 76QAPCh. 17 - Prob. 77QAPCh. 17 - Prob. 78QAPCh. 17 - Prob. 79QAPCh. 17 - Prob. 80QAPCh. 17 - Prob. 81QAPCh. 17 - Prob. 82QAPCh. 17 - Prob. 83QAPCh. 17 - Prob. 84QAPCh. 17 - Prob. 85QAPCh. 17 - Prob. 86QAPCh. 17 - Prob. 87QAPCh. 17 - Prob. 88QAPCh. 17 - Prob. 89QAPCh. 17 - Prob. 90QAPCh. 17 - Prob. 91QAPCh. 17 - Prob. 92QAPCh. 17 - Prob. 93QAPCh. 17 - Prob. 94QAPCh. 17 - Prob. 95QAPCh. 17 - Prob. 96QAPCh. 17 - Prob. 97QAPCh. 17 - Prob. 98QAPCh. 17 - Prob. 99QAPCh. 17 - Prob. 100QAPCh. 17 - Prob. 101QAPCh. 17 - Prob. 102QAPCh. 17 - Prob. 103QAPCh. 17 - Prob. 104QAPCh. 17 - Prob. 105QAPCh. 17 - Prob. 106QAPCh. 17 - Prob. 107QAPCh. 17 - Prob. 108QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY