
Student Workbook for College Physics: A Strategic Approach Volume 1 (Chs. 1-16)
3rd Edition
ISBN: 9780321908865
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 1P
a.
To determine
To find: The time taken by the light to travel through a
b.
To determine
To find: The thickness of water could travel in the same amount of time.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I. Pushing on a File Cabinet
Bob has been asked to push a heavy file cabinet down the
hall to another office. It's not on rollers, so there is a lot
of friction. At time t = 0 seconds, he starts pushing it
from rest with increasing force until it starts to move at t
= 2 seconds. He pushes the file cabinet down the hall
with varying amounts of force. The velocity versus time
graph of the cabinet is shown below.
A. On the graphs provided below,
1. draw the net force vs. time that would produce this velocity graph;
2. draw the friction force vs. time for this motion;
3. draw the applied force (Fon Cabinet by Bob) VS. time for this motion (the first two seconds of this graph
have been drawn for you).
Velocity (m/s)
Applied Force (N)
Friction Force (N)
Net Force (N)
A
-m
B
-U
time
(s)
D
time
(s)
time
(s)
time
(s)
answer it
Please draw a sketch and a FBD
Chapter 17 Solutions
Student Workbook for College Physics: A Strategic Approach Volume 1 (Chs. 1-16)
Ch. 17 - The frequency of a light wave in air is 5.3 1014...Ch. 17 - Rank in order the following according to their...Ch. 17 - The wavelength of a light wave is 700 nm in air;...Ch. 17 - A double-slit interference experiment shows...Ch. 17 - Figure Q17.5 shows the fringes observed in a...Ch. 17 - In a double-slit interference experiment,...Ch. 17 - Figure Q17.7 shows the viewing screen in a...Ch. 17 - Figure Q17.7 is the interference pattern seen on a...Ch. 17 - Figure Q17.9 shows the light intensity on a...Ch. 17 - Figure Q17.10 shows the light intensity on a...
Ch. 17 - Light with a wavelength of 600 nm is incident on a...Ch. 17 - White light is incident on a diffraction grating....Ch. 17 - Figure Q17.13 shows a light wave incident on and...Ch. 17 - A soap bubble usually pops because some part of it...Ch. 17 - An oil film on top of water has one patch that is...Ch. 17 - Should the antireflection coating of a microscope...Ch. 17 - Example 17.5 showed that a thin film whose...Ch. 17 - Prob. 18CQCh. 17 - Prob. 19MCQCh. 17 - The frequency of a light wave in air is 4.6 1014...Ch. 17 - Light passes through a diffraction grating with a...Ch. 17 - Blue light of wavelength 450 nm passes through a...Ch. 17 - Yellow light of wavelength 590 nm passes through a...Ch. 17 - Light passes through a 10-m-wide slit and is...Ch. 17 - Prob. 25MCQCh. 17 - You want to estimate the diameter of a very small...Ch. 17 - Prob. 1PCh. 17 - a. How long (in ns) does it take light to travel...Ch. 17 - A 5.0-cm-thick layer of oil (n = 1.46) is...Ch. 17 - A light wave has a 670 nm wavelength in air. Its...Ch. 17 - How much time does it take a pulse of light to...Ch. 17 - A helium-neon laser beam has a wavelength in air...Ch. 17 - Two narrow slits 50 m apart are illuminated with...Ch. 17 - Light from a sodium lamp (= 589 nm) illuminates...Ch. 17 - Two narrow slits are illuminated by light of...Ch. 17 - A double-slit experiment is performed with light...Ch. 17 - Light from a helium-neon laser (= 633 nm) is used...Ch. 17 - Two narrow slits are 0.12 mm apart. Light of...Ch. 17 - In a double-slit experiment, the distance from one...Ch. 17 - A diffraction grating with 750 slits/mm is...Ch. 17 - A 1.0-cm-wide diffraction grating has 1000 slits....Ch. 17 - Light of wavelength 600 nm illuminates a...Ch. 17 - A lab technician uses laser light with a...Ch. 17 - The human eye can readily detect wavelengths from...Ch. 17 - A diffraction grating with 600 lines/mm is...Ch. 17 - A 500 line/mm diffraction grating is illuminated...Ch. 17 - What is the thinnest film of MgF2 (n = 1.38) on...Ch. 17 - A very thin oil film (n = 1.25) floats on water (n...Ch. 17 - A film with n = 1.60 is deposited on glass. What...Ch. 17 - Antireflection coatings can be used on the inner...Ch. 17 - Solar cells are given antireflection coatings to...Ch. 17 - A thin film of MgF2 (n = 1.38) coats a piece of...Ch. 17 - Looking straight downward into a rain puddle whose...Ch. 17 - A helium-neon laser (= 633 nm) illuminates a...Ch. 17 - For a demonstration, a professor uses a razor...Ch. 17 - A 0.50-mm-wide slit is illuminated by light of...Ch. 17 - The second minimum in the diffraction pattern of a...Ch. 17 - What is the width of a slit for which the first...Ch. 17 - A 0.50-mm-diameter hole is illuminated by light of...Ch. 17 - Light from a helium-neon laser (= 633 nm) passes...Ch. 17 - You want to photograph a circular diffraction...Ch. 17 - Infrared light of wavelength 2.5 m illuminates a...Ch. 17 - An advanced computer sends information to its...Ch. 17 - Figure P17.38 shows the light intensity on a...Ch. 17 - Figure P17.38 shows the light intensity on a...Ch. 17 - Your friend has been given a laser for her...Ch. 17 - A double slit is illuminated simultaneously with...Ch. 17 - Figure P17.42 shows the light intensity on a...Ch. 17 - A laser beam of wavelength 670 nm shines through a...Ch. 17 - The two most prominent wavelengths in the light...Ch. 17 - A diffraction grating produces a first-order...Ch. 17 - A diffraction grating is illuminated...Ch. 17 - White light (400-700 nm) is incident on a 600...Ch. 17 - A miniature spectrometer used for chemical...Ch. 17 - Figure P17.49 shows the interference pattern on a...Ch. 17 - Figure P17.4919 shows the interference pattern on...Ch. 17 - Because sound is a wave, it is possible to make a...Ch. 17 - The shiny surface of a CD is imprinted with...Ch. 17 - If sunlight shines straight onto a peacock...Ch. 17 - The wings of some beetles have closely spaced...Ch. 17 - A diffraction grating having 500 lines/mm...Ch. 17 - Light emitted by element X passes through a...Ch. 17 - Light of a single wavelength is incident on a...Ch. 17 - A sheet of glass is coated with a 500-nm-thick...Ch. 17 - A soap bubble is essentially a thin film of water...Ch. 17 - A laboratory dish, 20 cm in diameter, is half...Ch. 17 - You need to use your cell phone, which broadcasts...Ch. 17 - Light from a sodium lamp ( = 589 nm) illuminates a...Ch. 17 - The opening to a cave is a tall, 30-cm-wide crack....Ch. 17 - A diffraction grating has 500 slits/mm. What is...Ch. 17 - Figure P17.65 shows the light intensity on a...Ch. 17 - Figure P17.65 shows the light intensity on a...Ch. 17 - Figure P17.67 shows the light intensity on a...Ch. 17 - One day, after pulling down your window shade, you...Ch. 17 - Prob. 70GPCh. 17 - A helium-neon laser ( = 633 nm), shown in Figure...Ch. 17 - In the laser range-finding experiments of Example...Ch. 17 - Prob. 73MSPPCh. 17 - Prob. 74MSPPCh. 17 - Prob. 75MSPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Part A: kg (a) Water at 20 °C (p = 998.3 and v = 1 × 10-6 m²/s) flows through a galvanised m³ iron pipe (k = 0.15 mm) with a diameter of 25 mm, entering the room at point A and discharging at point C from the fully opened gate valve B at a volumetric flow rate of 0.003 m³/s. Determine the required pressure at A, considering all the losses that occur in the system described in Figure Q1. Loss coefficients for pipe fittings have been provided in Table 1. [25 marks] (b) Due to corrosion within the pipe, the average flow velocity at C is observed to be V2 m/s after 10 years of operation whilst the pressure at A remains the same as determined in (a). Determine the average annual rate of growth of k within the pipe. [15 marks] 4₁ Figure Q1. Pipe system Page 2 25 mmarrow_forwardFor an independent study project, you design an experiment to measure the speed of light. You propose to bounce laser light off a mirror that is 53.5 km due east and have it detected by a light sensor that is 119 m due south of the laser. The first problem is to orient the mirror so that the laser light reflects off the mirror and into the light sensor. (a) Determine the angle that the normal to the mirror should make with respect to due west.(b) Since you can read your protractor only so accurately, the mirror is slightly misaligned and the actual angle between the normal to the mirror and due west exceeds the desired amount by 0.003°. Determine how far south you need to move the light sensor in order to detect the reflected laser light.arrow_forwardA mirror hangs 1.67 m above the floor on a vertical wall. A ray of sunlight, reflected off the mirror, forms a spot on the floor 1.41 m from the wall. Later in the day, the spot has moved to a point 2.50 m from the wall. (a) What is the change in the angle of elevation of the Sun, between the two observations?arrow_forward
- It is not (theta 1i) or (pi/2 - theta 2i)arrow_forwardAssume the helium-neon lasers commonly used in student physics laboratories have power outputs of 0.250 mW. (a) If such a laser beam is projected onto a circular spot 3.40 mm in diameter, what is its intensity (in watts per meter squared)? 27.5 W/m² (b) Find the peak magnetic field strength (in teslas). 8.57e-7 X T (c) Find the peak electric field strength (in volts per meter). 144 V/marrow_forwardIdentify the most likely substancearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY