EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
1st Edition
ISBN: 9781337684668
Author: Katz
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 19PQ

(a)

To determine

The period and wavelength of the wave.

(a)

Expert Solution
Check Mark

Answer to Problem 19PQ

The period of the wave is 1.21s_, and the wavelength is 0.604m_.

Explanation of Solution

Given the wave equation of the longitudinal harmonic wave.

S(x,t)=(0.850)sin(10.4x5.20t) (I)

Write the general equation of a longitudinal harmonic wave traveling in positive x direction.

S(x,t)=Smaxsin(kxωt) (II)

Here, Smax is the amplitude, k is the wave vector, and ω is the angular frequency.

Compare equation (I) and (II) to find the values of k and ω.

  k=10.4rad/m

  ω=5.20rad/s

Write the expression for the period of the wave.

T=2πω (III)

Here, T is the period.

Write the expression for the wavelength of the wave.

λ=2πk (IV)

Conclusion:

Substitute 5.20rad/s for ω in equation (III) to find T.

  T=2π5.20rad/s=1.21s

Substitute 10.4rad/m for k in equation (IV) to find λ.

  λ=2π10.4rad/m=0.604m

Therefore, the period of the wave is 1.21s_, and the wavelength is 0.604m_.

(b)

To determine

The displacement of the particle at t=0, t=T/4, t=T/2, t=3T/4, and t=T.

(b)

Expert Solution
Check Mark

Answer to Problem 19PQ

The displacement of the particle at the given instants of time are given in Table 1.

Explanation of Solution

Given that the equilibrium position of the particle is x=λ/2.

Equation (II) is the general expression a longitudinal harmonic wave traveling in positive x direction.

  S(x,t)=Smaxsin(kxωt)

Equation (III) gives the expression for the period of the wave.

  T=2πω

Equation (IV) gives the expression for the wavelength of the wave.

  λ=2πk

Use equation (III) and (IV) in (II).

S(x,t)=Smaxsin(2πλx2πTt)=Smaxsin(2πλx2πTt) (V)

In order to find the displacement S, substitute x=λ/2, and 0.850m for Smax to find the displacement of the particles at the indicated times.

S(x,t)=(0.850m)sin(2πλλ22πTt) (VI)

Conclusion:

Substitute 0, T/4, T/2, 3T/4, and T for t in equation (VI) to find the displacement corresponding to each time. Use 1.21s for T in the equations. The results are tabulated in Table 1.

Table 1

PeriodTime tS(m)
000
T/40.3030.850
T/20.6050
3T/40.9080.850
T1.210

Therefore, the displacement of the particle at the given instants of time are given in Table 1.

(c)

To determine

The position of the particle at t=0, t=T/4, t=T/2, t=3T/4, and t=T.

(c)

Expert Solution
Check Mark

Answer to Problem 19PQ

The position of the particle at the given instants of time are given in Table 2.

Explanation of Solution

Given that the equilibrium position of the particle is x=λ/2.

Table 1 gives the displacement of the particle at different times. At t=0, the particle’s position is x=λ/2. Since λ=0.604m, the position at t=0 can be computed as,

  x=0.604m2=0.302m

Conclusion:

The position of the particle corresponding to the other times given can be computed by adding the displacement corresponding to the respective time with the initial position 0.302m. The results are tabulated in Table 2.

Table 2

PeriodTime tS (m)Position (m)
0000.302
T/40.3030.8501.15
T/20.60500.302
3T/40.9080.8500.548
T1.2100.302

Therefore, the position of the particle at the given instants of time are given in Table 2.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Steel train rails are laid in 13.0-m-long segments placed end to end. The rails are laid on a winter day when their temperature is -6.0° C. Part A How much space must be left between adjacent rails if they are just to touch on a summer day when their temperature is 32.0°C? Express your answer with the appropriate units. ☐ о μΑ ? D = Value Units Submit Previous Answers Request Answer × Incorrect; Try Again; 3 attempts remaining Al Study Tools Looking for some guidance? Let's work through a few related practice questions before you go back to the real thing. This won't impact your score, so stop at anytime and ask for clarification whenever you need it. Ready to give it a try? Start Part B If the rails are originally laid in contact, what is the stress in them on a summer day when their temperature is 32.0°C? Express your answer in pascals. Enter positive value if the stress is tensile and negative value if the stress is compressive. F A Ο ΑΣΦ ? Ра
help me with this and the step I am so confused. It should look something like the figure i shown
Part A In an effort to stay awake for an all-night study session, a student makes a cup of coffee by first placing a 200 W electric immersion heater in 0.250 kg of water. How much heat must be added to the water to raise its temperature from 20.5° C to 95.0°C? Express your answer in joules. ΕΠΙ ΑΣΦ Q Submit Request Answer Part B ? J How much time is required? Assume that all of the heater's power goes into heating the water. Express your answer in seconds. VG ΑΣΦ ? t = S

Chapter 17 Solutions

EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC

Ch. 17 - Prob. 5PQCh. 17 - Prob. 6PQCh. 17 - Prob. 7PQCh. 17 - Prob. 8PQCh. 17 - A sinusoidal traveling wave is generated on a...Ch. 17 - Prob. 10PQCh. 17 - Prob. 11PQCh. 17 - The equation of a harmonic wave propagating along...Ch. 17 - Prob. 13PQCh. 17 - Prob. 14PQCh. 17 - Prob. 15PQCh. 17 - A harmonic transverse wave function is given by...Ch. 17 - Prob. 17PQCh. 17 - Prob. 18PQCh. 17 - Prob. 19PQCh. 17 - Prob. 20PQCh. 17 - Prob. 21PQCh. 17 - Prob. 22PQCh. 17 - A wave on a string with linear mass density 5.00 ...Ch. 17 - A traveling wave on a thin wire is given by the...Ch. 17 - Prob. 25PQCh. 17 - Prob. 26PQCh. 17 - Prob. 27PQCh. 17 - Prob. 28PQCh. 17 - Prob. 29PQCh. 17 - Prob. 30PQCh. 17 - Prob. 31PQCh. 17 - Problems 32 and 33 are paired. N Seismic waves...Ch. 17 - Prob. 33PQCh. 17 - Prob. 34PQCh. 17 - Prob. 35PQCh. 17 - Prob. 36PQCh. 17 - Prob. 37PQCh. 17 - Prob. 38PQCh. 17 - Prob. 39PQCh. 17 - Prob. 40PQCh. 17 - Prob. 41PQCh. 17 - Prob. 42PQCh. 17 - Prob. 43PQCh. 17 - Prob. 44PQCh. 17 - Prob. 45PQCh. 17 - What is the sound level of a sound wave with...Ch. 17 - Prob. 47PQCh. 17 - The speaker system at an open-air rock concert...Ch. 17 - Prob. 49PQCh. 17 - Prob. 50PQCh. 17 - Prob. 51PQCh. 17 - Prob. 52PQCh. 17 - Prob. 53PQCh. 17 - Using the concept of diffraction, discuss how the...Ch. 17 - Prob. 55PQCh. 17 - Prob. 56PQCh. 17 - An ambulance traveling eastbound at 140.0 km/h...Ch. 17 - Prob. 58PQCh. 17 - Prob. 59PQCh. 17 - Prob. 60PQCh. 17 - Prob. 61PQCh. 17 - In Problem 61, a. Sketch an image of the wave...Ch. 17 - Prob. 63PQCh. 17 - Prob. 64PQCh. 17 - Prob. 65PQCh. 17 - Prob. 66PQCh. 17 - Prob. 67PQCh. 17 - Prob. 68PQCh. 17 - Prob. 69PQCh. 17 - Prob. 70PQCh. 17 - A block of mass m = 5.00 kg is suspended from a...Ch. 17 - A The equation of a harmonic wave propagating...Ch. 17 - Prob. 73PQCh. 17 - Prob. 74PQCh. 17 - Prob. 75PQCh. 17 - Prob. 76PQCh. 17 - A siren emits a sound of frequency 1.44103 Hz when...Ch. 17 - Female Aedes aegypti mosquitoes emit a buzz at...Ch. 17 - A careless child accidentally drops a tuning fork...Ch. 17 - Prob. 80PQCh. 17 - A wire with a tapered cross-sectional area is...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY
Vibrations of Stretched String; Author: PhysicsPlus;https://www.youtube.com/watch?v=BgINQpfqJ04;License: Standard Youtube License