
University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 17.95P
(a)
To determine
The final temperature of the calorimeter can.
(b)
To determine
The mass of the content of the system.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Part A:
kg
(a) Water at 20 °C (p = 998.3 and v = 1 × 10-6 m²/s) flows through a galvanised
m³
iron pipe (k = 0.15 mm) with a diameter of 25 mm, entering the room at point A and
discharging at point C from the fully opened gate valve B at a volumetric flow rate of
0.003 m³/s. Determine the required pressure at A, considering all the losses that occur
in the system described in Figure Q1. Loss coefficients for pipe fittings have been
provided in Table 1.
[25 marks]
(b) Due to corrosion within the pipe, the average flow velocity at C is observed to be
V2 m/s after 10 years of operation whilst the pressure at A remains the same as
determined in (a). Determine the average annual rate of growth of k within the pipe.
[15 marks]
4₁
Figure Q1. Pipe system
Page 2
25 mm
For an independent study project, you design an experiment to measure the speed of light. You propose to bounce laser light off a mirror that is 53.5 km due east and have it detected by a light sensor that is 119 m due south of the laser. The first problem is to orient the mirror so that the laser light reflects off the mirror and into the light sensor.
(a) Determine the angle that the normal to the mirror should make with respect to due west.(b) Since you can read your protractor only so accurately, the mirror is slightly misaligned and the actual angle between the normal to the mirror and due west exceeds the desired amount by 0.003°. Determine how far south you need to move the light sensor in order to detect the reflected laser light.
A mirror hangs 1.67 m above the floor on a vertical wall. A ray of sunlight, reflected off the mirror, forms a spot on the floor 1.41 m from the wall. Later in the day, the spot has moved to a point 2.50 m from the
wall.
(a) What is the change in the angle of elevation of the Sun, between the two observations?
Chapter 17 Solutions
University Physics (14th Edition)
Ch. 17 - Explain why it would not make sense to use a...Ch. 17 - If you heat the air inside a rigid, scaled...Ch. 17 - Many automobile engines have cast-iron cylinders...Ch. 17 - Why do frozen water pipes burst? Would a mercury...Ch. 17 - Two bodies made of the same material have the same...Ch. 17 - Why is it sometimes possible to loosen caps on...Ch. 17 - The inside of an oven is at a temperature of 200C...Ch. 17 - A newspaper article about the weather states that...Ch. 17 - A student asserts that a suitable unit for...Ch. 17 - Prob. Q17.10DQ
Ch. 17 - The units of specific heat c are J/kg K, but the...Ch. 17 - Why is a hot, humid day in the tropics generally...Ch. 17 - A piece of aluminum foil used to wrap a potato for...Ch. 17 - Desert travelers sometimes keep water in a canvas...Ch. 17 - When you first step out of the shower, you feel...Ch. 17 - The climate of regions adjacent to large bodies of...Ch. 17 - When water is placed in ice-cube trays in a...Ch. 17 - Before giving you an injection, a physician swabs...Ch. 17 - A cold block of metal feels colder than a block of...Ch. 17 - A person pours a cup of hot coffee, intending to...Ch. 17 - When a freshly baked apple pie has just been...Ch. 17 - Old-time kitchen lore suggests that things cook...Ch. 17 - In coastal regions in the winter, the temperature...Ch. 17 - It is well known that a potato bakes faster if a...Ch. 17 - Glider pilots in the Midwest know that thermal...Ch. 17 - Some folks claim that ice cubes freeze faster if...Ch. 17 - Were lucky that the earth isnt in thermal...Ch. 17 - Prob. Q17.28DQCh. 17 - Convert the following Celsius temperatures to...Ch. 17 - BIO Temperatures in Biomedicine. (a) Normal body...Ch. 17 - Prob. 17.3ECh. 17 - (a) Calculate the one temperature at which...Ch. 17 - You put a bottle of soft drink in a refrigerator...Ch. 17 - Prob. 17.6ECh. 17 - The pressure of a gas at the triple point of water...Ch. 17 - Prob. 17.8ECh. 17 - Prob. 17.9ECh. 17 - Prob. 17.10ECh. 17 - The Humber Bridge in England has the worlds...Ch. 17 - One of the tallest buildings in the world is the...Ch. 17 - A U.S. penny has a diameter of 1.9000 cm at 20.0C....Ch. 17 - Ensuring a Tight Fit. Aluminum rivets used in...Ch. 17 - A copper cylinder is initially at 20.0C. At what...Ch. 17 - A geodesic dome constructed with an aluminum...Ch. 17 - A glass flask whose volume is 1000.00 cm3 at 0.0C...Ch. 17 - A steel tank is completely filled with 1.90 m3 of...Ch. 17 - A machinist bores a hole of diameter 1.35 cm in a...Ch. 17 - As a new mechanical engineer for Engines Inc., you...Ch. 17 - Steel train rails are laid in 12.0-m-long segments...Ch. 17 - A brass rod is 185 cm long and 1.60 cm in...Ch. 17 - An aluminum tea kettle with mass 1.10 kg and...Ch. 17 - In an effort to stay awake for an all-night study...Ch. 17 - Prob. 17.25ECh. 17 - BIO Heat Loss During Breathing. In very cold...Ch. 17 - You are given a sample of metal and asked to...Ch. 17 - On-Demand Water Heaters. Conventional hot-water...Ch. 17 - Prob. 17.29ECh. 17 - Prob. 17.30ECh. 17 - CP A nail driven into a board increases in...Ch. 17 - A technician measures the specific heat of an...Ch. 17 - CP A 15.0-g bullet traveling horizontally at 865...Ch. 17 - You have 750 g of water at 10.0C in a large...Ch. 17 - Prob. 17.35ECh. 17 - BIO Treatment for a Stroke. One suggested...Ch. 17 - A blacksmith cools a 1.20-kg chunk of iron,...Ch. 17 - A copper calorimeter can with mass 0.100 kg...Ch. 17 - A copper pot with a mass of 0.500 kg contains...Ch. 17 - In a container of negligible mass, 0.200 kg of ice...Ch. 17 - Prob. 17.41ECh. 17 - BIO Before going in for his annual physical, a...Ch. 17 - Prob. 17.43ECh. 17 - Prob. 17.44ECh. 17 - How much heat is required to convert 18.0 g of ice...Ch. 17 - An open container holds 0.550 kg of ice at 15.0C....Ch. 17 - CP What must the initial speed of a lead bullet be...Ch. 17 - BIO Steam Burns Versus Water Burns. What is the...Ch. 17 - BIO The Ship of the Desert. Camels require very...Ch. 17 - BIO Evaporation of sweat is an important mechanism...Ch. 17 - CP An asteroid with a diameter of 10 km and a mass...Ch. 17 - A laboratory technician drops a 0.0850-kg sample...Ch. 17 - An insulated beaker with negligible mass contains...Ch. 17 - A 4.00-kg silver ingot is taken from a furnace,...Ch. 17 - A vessel whose walls are thermally insulated...Ch. 17 - Two rods, one made of brass and the other made of...Ch. 17 - Suppose that the rod in Fig. 17.24a is made of...Ch. 17 - One end of an insulated metal rod is maintained at...Ch. 17 - A carpenter builds an exterior house wall with a...Ch. 17 - An electric kitchen range has a total wall area of...Ch. 17 - BIO Conduction Through the Skin. The blood plays...Ch. 17 - A long rod, insulated to prevent heat loss along...Ch. 17 - A pot with a steel bottom 8.50 mm thick rests on a...Ch. 17 - You are asked to design a cylindrical steel rod...Ch. 17 - A picture window has dimensions of 1.40 m 2.50 m...Ch. 17 - Prob. 17.66ECh. 17 - A spherical pot contains 0.75 L of hot coffee...Ch. 17 - The emissivity of tungsten is 0.350. A tungsten...Ch. 17 - Size of a Light-Bulb Filament. The operating...Ch. 17 - The Sizes of Stars. The hot glowing surfaces of...Ch. 17 - CP A Foucault pendulum consists of a brass sphere...Ch. 17 - Suppose that a steel hoop could be constructed to...Ch. 17 - You propose a new temperature scale with...Ch. 17 - CP CALC A 250-kg weight is hanging from the...Ch. 17 - You are making pesto for your pasta and have a...Ch. 17 - A surveyors 30.0-m steel tape is correct at 20.0C....Ch. 17 - A metal rod that is 30.0 cm long expands by 0.0650...Ch. 17 - On a cool (4.0C) Saturday morning, a pilot fills...Ch. 17 - (a) Equation (17.12) gives the stress required to...Ch. 17 - CP A metal wire, with density and Youngs modulus...Ch. 17 - A steel ring with a 2.5000-in. inside diameter at...Ch. 17 - BIO Doughnuts: Breakfast of Champions! Atypical...Ch. 17 - BIO Shivering. Shivering is your bodys way of...Ch. 17 - You cool a 100.0-g slug of red-hot iron...Ch. 17 - CALC Debyes T3 Law. At very low temperatures the...Ch. 17 - CP A person of mass 70.0 kg is sitting in the...Ch. 17 - Hot Air in a Physics Lecture. (a) A typical...Ch. 17 - CALC The molar heat capacity of a certain...Ch. 17 - Prob. 17.89PCh. 17 - BIO Overheating. (a) By how much would the body...Ch. 17 - BIO A Thermodynamic Process in an Insect. The...Ch. 17 - Hot Water Versus Steam Heating. In a household...Ch. 17 - You have 1.50 kg of water at 28.0C in an insulated...Ch. 17 - A thirsty nurse cools a 2.00-L bottle of a soft...Ch. 17 - Prob. 17.95PCh. 17 - A Styrofoam bucket of negligible mass contains...Ch. 17 - In a container of negligible mass, 0.0400 kg of...Ch. 17 - Prob. 17.98PCh. 17 - Effect of a Window in a Door. A carpenter builds a...Ch. 17 - One experimental method of measuring an insulating...Ch. 17 - Compute the ratio of the rate of heat loss through...Ch. 17 - Rods of copper, brass, and steeleach with...Ch. 17 - A brass rod 12.0 cm long, a copper rod 18.0 cm...Ch. 17 - BIO Basal Metabolic Rate. The basal metabolic rate...Ch. 17 - Prob. 17.105PCh. 17 - Prob. 17.106PCh. 17 - A Thermos for Liquid Helium. A physicist uses a...Ch. 17 - A metal sphere with radius 3.20 cm is suspended in...Ch. 17 - Prob. 17.109PCh. 17 - The icecaps of Greenland and Antarctica contain...Ch. 17 - DATA As a physicist, yon put heat into a 500.0-g...Ch. 17 - DATA At a chemical plant where you are an...Ch. 17 - DATA During your mechanical engineering...Ch. 17 - Prob. 17.114CPCh. 17 - A hollow cylinder has length L, inner radius a,...Ch. 17 - You place 35 g of this cryoprotectant at 22C in...Ch. 17 - Careful measurements show that the specific heat...Ch. 17 - In another experiment, you place a layer of this...Ch. 17 - To measure the specific heat in the liquid phase...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- It is not (theta 1i) or (pi/2 - theta 2i)arrow_forwardAssume the helium-neon lasers commonly used in student physics laboratories have power outputs of 0.250 mW. (a) If such a laser beam is projected onto a circular spot 3.40 mm in diameter, what is its intensity (in watts per meter squared)? 27.5 W/m² (b) Find the peak magnetic field strength (in teslas). 8.57e-7 X T (c) Find the peak electric field strength (in volts per meter). 144 V/marrow_forwardIdentify the most likely substancearrow_forward
- A proton moves at 5.20 × 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 83.33 ☑ Your response differs from the correct answer by more than 10%. Double check your calculations. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 2.77 Your response differs from the correct answer by more than 10%. Double check your calculations. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. 5.4e5 V × Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + [6.68e4 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each…arrow_forward(1) Fm Fmn mn Fm B W₁ e Fmt W 0 Fit Wt 0 W Fit Fin n Fmt n As illustrated in Fig. consider the person performing extension/flexion movements of the lower leg about the knee joint (point O) to investigate the forces and torques produced by muscles crossing the knee joint. The setup of the experiment is described in Example above. The geometric parameters of the model under investigation, some of the forces acting on the lower leg and its free-body diagrams are shown in Figs. and For this system, the angular displacement, angular velocity, and angular accelera- tion of the lower leg were computed using data obtained during the experiment such that at an instant when 0 = 65°, @ = 4.5 rad/s, and a = 180 rad/s². Furthermore, for this sys- tem assume that a = 4.0 cm, b = 23 cm, ß = 25°, and the net torque generated about the knee joint is M₁ = 55 Nm. If the torque generated about the knee joint by the weight of the lower leg is Mw 11.5 Nm, determine: = The moment arm a of Fm relative to the…arrow_forwardThe figure shows a particle that carries a charge of 90 = -2.50 × 106 C. It is moving along the +y -> axis at a speed of v = 4.79 × 106 m/s. A magnetic field B of magnitude 3.24 × 10-5 T is directed along the +z axis, and an electric field E of magnitude 127 N/C points along the -x axis. Determine (a) the magnitude and (b) direction (as an angle within x-y plane with respect to +x- axis in the range (-180°, 180°]) of the net force that acts on the particle. +x +z AB 90 +yarrow_forward
- Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 1.00 μC, and L = 0.850 m). Calculate the total electric force on the 7.00-μC charge. magnitude direction N ° (counterclockwise from the +x axis) y 7.00 με 9 L 60.0° x -4.00 μC ①arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 9.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. (b) Imagine adding electrons to the pin until the negative charge has the very large value 1.00 mC. How many electrons are added for every 109 electrons already present?arrow_forward(a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure. A Both spheres have the same charge of 6.80 nC, and are in static equilibrium when 0 = 4.95°. What is L (in m)? Assume the cords are massless. 0.180 Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m (b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case? 9.60 Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. ncarrow_forward
- A proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 83.33 Your response differs from the correct answer by more than 10%. Double check your calculations. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 2.77 Your response differs from the correct answer by more than 10%. Double check your calculations. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. = 5.4e5 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + 6.68e4 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step…arrow_forward(a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure. A Both spheres have the same charge of 6.80 nC, and are in static equilibrium when = 4.95°. What is L (in m)? Assume the cords are massless. 0.150 Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m (b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case? 13.6 ☑ Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. nCarrow_forwardA proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 10³ N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 1.15e-7 ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 5.33e-3 ☑ Your response is off by a multiple of ten. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. | ↑ + jkm/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning


Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning