EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100460300
Author: SERWAY
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 17.7OQ
To determine
The correct statement about sound wave.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Two long, parallel wires carry currents of I₁ = 2.70 A and I2 = 4.85 A in the directions indicated in the figure below, where d = 22.0 cm. (Take the positive x direction to be
to the right.)
12
(a) Find the magnitude and direction of the magnetic field at a point midway between the wires.
magnitude
direction
3.91
270
μπ
⚫ counterclockwise from the +x axis
(b) Find the magnitude and direction of the magnetic field at point P, located d = 22.0 cm above the wire carrying the 4.85-A current.
magnitude
direction
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. μT
The response you submitted has the wrong sign.° counterclockwise from the +x axis
O Macmillan Learning
The mass of a particular eagle is twice that of a hunted
pigeon. Suppose the pigeon is flying north at Vi2 = 16.1 m/s
when the eagle swoops down, grabs the pigeon, and flies off.
At the instant right before the attack, the eagle is flying
toward the pigeon at an angle 0 = 64.3° below the horizontal
and a speed of Vi,1
= 37.9 m/s.
What is the speed of of the eagle immediately after it catches
its prey?
What is the magnitude & of the angle, measured from
horizontal, at which the eagle is flying immediately after
the strike?
Uf =
II
x10
TOOLS
Vi.1
Vi,2
m/s
What is the equivalent resistance if you connect a 1.7 Ohm, a 9.3 Ohm, and a 22 Ohm resistor in series? (Give your answer as the number of Ohms.)
Chapter 17 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 17 - If you blow across the top of an empty soft-drink...Ch. 17 - A vibrating guitar string makes very little sound...Ch. 17 - Increasing the intensity of a sound by a factor of...Ch. 17 - Consider detectors of water waves at three...Ch. 17 - You stand on a platform at a train station and...Ch. 17 - An airplane flying with a constant velocity moves...Ch. 17 - Table 17.1 shows the speed of sound is typically...Ch. 17 - Prob. 17.2OQCh. 17 - As you travel down the highway in your car, an...Ch. 17 - What happens to a sound wave as it travels from...
Ch. 17 - A church bell in a steeple rings once. At 300 m in...Ch. 17 - If a 1.00-kHz sound source moves at a speed of...Ch. 17 - Prob. 17.7OQCh. 17 - Assume a change at the source of sound reduces the...Ch. 17 - A point source broadcasts sound into a uniform...Ch. 17 - Suppose an observer and a source of sound are both...Ch. 17 - Prob. 17.11OQCh. 17 - With a sensitive sound-level meter, you measure...Ch. 17 - Doubling the power output from a sound source...Ch. 17 - Of the following sounds, which one is most likely...Ch. 17 - How can an object move with respect to an observer...Ch. 17 - Older auto-focus cameras sent out a pulse of sound...Ch. 17 - A friend sitting in her cat far down the toad...Ch. 17 - How can you determine that the speed of sound is...Ch. 17 - Prob. 17.5CQCh. 17 - You are driving toward a cliff and honk your horn....Ch. 17 - The radar systems used by police to detect...Ch. 17 - The Tunguska event. On June 30, 1908, a meteor...Ch. 17 - A sonic ranger is a device that determines the...Ch. 17 - A sinusoidal sound wave moves through a medium and...Ch. 17 - As a certain sound wave travels through the air,...Ch. 17 - Write an expression that describes the pressure...Ch. 17 - An experimenter wishes to generate in air a sound...Ch. 17 - Calculate the pressure amplitude of a 2.00-kHz...Ch. 17 - Earthquakes at fault lines in the Earths crust...Ch. 17 - A dolphin (Fig. P17.7) in seawater at a...Ch. 17 - A sound wave propagates in air at 27C with...Ch. 17 - Ultrasound is used in medicine both for diagnostic...Ch. 17 - A sound wave in air has a pressure amplitude equal...Ch. 17 - Prob. 17.11PCh. 17 - A rescue plane flies horizontally at a constant...Ch. 17 - A flowerpot is knocked off a window ledge from a...Ch. 17 - In the arrangement shown in Figure P17.14. an...Ch. 17 - The speed of sound in air (in meters per second)...Ch. 17 - A sound wave moves down a cylinder as in Figure...Ch. 17 - A hammer strikes one end of a thick iron rail of...Ch. 17 - A cowboy stands on horizontal ground between two...Ch. 17 - Calculate the sound level (in decibels) of a sound...Ch. 17 - The area of a typical eardrum is about 5.00 X 10-5...Ch. 17 - The intensity of a sound wave at a fixed distance...Ch. 17 - The intensity of a sound wave at a fixed distance...Ch. 17 - Prob. 17.23PCh. 17 - The sound intensity at a distance of 16 in from a...Ch. 17 - The power output of a certain public-address...Ch. 17 - A sound wave from a police siren has an intensity...Ch. 17 - A train sounds its horn as it approaches an...Ch. 17 - As the people sing in church, the sound level...Ch. 17 - The most soaring vocal melody is in Johann...Ch. 17 - Show that the difference between decibel levels 1...Ch. 17 - A family ice show is held at an enclosed arena....Ch. 17 - Two small speakers emit sound waves of' different...Ch. 17 - A firework charge is detonated many meters above...Ch. 17 - A fireworks rocket explodes at a height of 100 m...Ch. 17 - Prob. 17.35PCh. 17 - Why is the following situation impossible? It is...Ch. 17 - An ambulance moving at 42 m/s sounds its siren...Ch. 17 - Prob. 17.38PCh. 17 - A driver travels northbound on a highway at a...Ch. 17 - Submarine A travels horizontally at 11.0 m/s...Ch. 17 - Review. A block with a speaker bolted to it is...Ch. 17 - Review. A block with a speaker bolted to it is...Ch. 17 - Expectant parents are thrilled to hear their...Ch. 17 - Why is the following situation impossible? At the...Ch. 17 - Prob. 17.45PCh. 17 - Prob. 17.46PCh. 17 - A supersonic jet traveling at Mach 3.00 at an...Ch. 17 - Prob. 17.48APCh. 17 - Some studies suggest that the upper frequency...Ch. 17 - Prob. 17.50APCh. 17 - Prob. 17.51APCh. 17 - Prob. 17.52APCh. 17 - Prob. 17.53APCh. 17 - A train whistle (f = 400 Hz) sounds higher or...Ch. 17 - An ultrasonic tape measure uses frequencies above...Ch. 17 - The tensile stress in a thick copper bar is 99.5%...Ch. 17 - Review. A 150-g glider moves at v1 = 2.30 m/s on...Ch. 17 - Consider the following wave function in SI units:...Ch. 17 - Prob. 17.59APCh. 17 - Prob. 17.60APCh. 17 - To measure her speed, a skydiver carries a buzzer...Ch. 17 - Prob. 17.62APCh. 17 - Prob. 17.63APCh. 17 - Prob. 17.64APCh. 17 - A police car is traveling east at 40.0 m/s along a...Ch. 17 - The speed of a one-dimensional compressional wave...Ch. 17 - Prob. 17.67APCh. 17 - Three metal rods are located relative to each...Ch. 17 - Prob. 17.69APCh. 17 - A siren mounted 011 the roof of a firehouse emits...Ch. 17 - Prob. 17.71CPCh. 17 - In Section 16.7, we derived the speed of sound in...Ch. 17 - Equation 16.40 states that at distance r away from...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Three wires meet at a junction. One wire carries a current of 5.2 Amps into the junction, and a second wire carries a current of 3.7 Amps out of the junction. What is the current in the third wire? Give your answer as the number of Amps, and give a positive number if the current in that wire flows out of the junction, or a negative number if the current in that wire flows into the junction.arrow_forwardWhat is the equivalent resistance if you connect a 4.5 Ohm, a 6.8 Ohm, and a 15 Ohm resistor in parallel? (Give your answer as the number of Ohms.)arrow_forwardSuppose a heart defibrillator passes 10.5 Amps of current through a patient's torso for 5.0 x 10-3 seconds in order to restore a regular heartbeat. The voltage across the defibrillator is 9800 volts for the entire time that current is flowing. If 7.25 kg of body tissue is involved, with a specific heat of 3500 J/(kg°C), then what is the resulting temperature increase of the person's torso? (Give your answer as the number of degrees C.)arrow_forward
- The figure below is a cross-sectional view of a coaxial cable. The center conductor is surrounded by a rubber layer, an outer conductor, and another rubber layer. In a particular application, the current in the inner conductor is I₁ = 1.04 A out of the page and the current in the outer conductor is I2 = 2.90 A into the page. Assuming the distance d = 1.00 mm, answer the following. 4 12 (a) Determine the magnitude and direction of the magnetic field at point a. magnitude 208 direction upward (b) Determine the magnitude and direction of the magnetic field at point b. magnitude direction 238 You can approach this problem by finding the field produced by current I₁ and the field produced by I2 and then adding them vectorially. μT downwardarrow_forwardShoto, from My Hero Academia, has a power (or a “quirk”) that allows him to make large amounts of ice from nothing. Let us say that due to a fire a 361 kg steel beam is heated to 943.˚C and Shoto creates 390. kg of ice at 0.00˚C around it to cool it down. What is the final temperature of the system after the ice melts and it reaches thermal equilibrium? The specific heat of steel is 502 J/kg˚C. The specific heat of water is 4186 J/kg˚C. The latent heat of fusion for ice is 3.33⋅10^5 J/kg.arrow_forwardA 25.0 cm long organ pipe is filled with air and is open at one end and closed at the other. The speed of sound in air at 0°C is 331 m/s. What is the frequency of the fourth mode of vibration? Multiple Choice О 1,550 Hz О 1,750 Hz О 2,320 Hz О 2,720 Hz О 3,170 Hzarrow_forward
- 23.4 g of coffee beans at room temperature (18.6 °C) is mixed into 316 g of water at 96.8 °C in an effort to make coffee. The entire system is poured in a 363 g ceramic mug. Assume the mug is initally also at room temperature (18.6 °C). What is the final temperature of the mixture? The specific heat of ground coffee beans is 1670 J/kg˚C, the specific heat of water is 4186 J/kg˚C, and the specific heat of the mug is 850. J/kg˚C.arrow_forwardSnoop Dogg, in an effort to get laid back (with his mind on his money and his money on his mind) pours himself a gin and juice. He mixes 0.124 kg (about 3 shots) of gin with 0.576 kg (about a pint) of orange juice. The gin starts at 20.0˚C, room temperature. The juice is refrigerated and starts at 2.89 ˚C. What is the final temperature after mixing of the gin and juice? The specific heat of gin is 3460 J/kg˚C and the specific heat of orange juice is 3730 J/kg˚C.arrow_forwardA sword is heated up to 226 °C, it is put into a nearby barrel of water that is at 18.4 °C. What mass of water would be needed to cool the sword to 30.0˚C, bringing the system to thermal equilibrium? The sword is 35.4 kg and is made of steel. The specific heat of water is = 4186 J/kg ˚C. The specific heat of steel is = 502 J/kg ˚Carrow_forward
- You are planning on installing a new above-ground swimming pool in your backyard. The pool will be rectangular with dimensions 32.0 m x 10.0 m. It will be filled with fresh water to a depth of 2.20 m. In order to provide the appropriate structural support, you wish to determine the following. (a) Determine the force exerted on the bottom of the pool by the water (in N). (No Response) N (b) Determine the force exerted on each end of the pool by the water (in N). (Assume the end is the 10.0 m wall.) (No Response) N (c) Determine the force exerted on each side of the pool by the water (in N). (Assume the side is the 32.0 m wall.) (No Response) N (d) You wish to have swimming parties with your children and grandchildren. At a given time, you might have 23 people with an average mass of 75.0 kg in the pool. You need to determine if such parties will affect your calculations for the required strength of materials supporting your pool. The parties will not affect the required strength since…arrow_forwardThe construction of a water pistol is shown in the figure below. The cylinder with cross-sectional area A₁ is filled with water and when the piston is pushed (by pulling the trigger), water is forced out the tube with cross-sectional area A2. The radius of the cylinder and tube are, respectively, 1.30 cm and 1.10 mm, and the center of the tube is a height h = 3.00 cm above the center of the cylinder. (Assume atmospheric pressure is 1.013 × 105 Pa.) A2 A₁ (a) If the pistol is fired horizontally at a height of 1.30 m, determine the time interval (in s) required for water to travel from the nozzle to the ground. Neglect air resistance. (No Response) s (b) If the desired range of the stream is 7.50 m, with what speed ✓2 (in m/s) must the stream leave the nozzle? (No Response) m/s (c) At what speed v₁ (in m/s) must the plunger be moved to achieve the desired range? (No Response) m/s (d) What is the pressure (in Pa) at the nozzle? (No Response) Pa (e) Find the pressure (in Pa) needed in the…arrow_forwardA high-speed lifting mechanism supports a(n) 700-kg object with a steel cable that is 34.0 m long and 4.00 cm² in cross-sectional area. (a) Determine the elongation of the cable. (Enter your answer to at least two decimal places.) (No Response) mm (b) By what additional amount does the cable increase in length if the object is accelerated upwards at a rate of 2.5 m/s²? (No Response) mm (c) What is the greatest mass that can be accelerated upward at 2.5 m/s² if the stress in the cable is not to exceed the elastic limit of the cable, which is 2.2 × 108 Pa? (No Response) kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY