Concept explainers
(a)
The speed of the one dimensional compression wave.
(a)
Answer to Problem 17.59AP
The speed of the one dimensional compression wave is
Explanation of Solution
Given info: The young’s modulus of steel is
Write the expression to calculate the speed of the one dimensional compression wave.
Here,
Substitute
Conclusion:
Therefore the speed of the one dimensional compression wave is
(b)
The time interval of the wave.
(b)
Answer to Problem 17.59AP
The time interval of the wave is
Explanation of Solution
Given info: The young’s modulus of steel is
Write the expression to calculate time interval of the wave.
Here,
Substitute
Conclusion:
Therefore the time interval of the wave is
(c)
The distance of the travel by the back end of the rod.
(c)
Answer to Problem 17.59AP
The distance of the travel by the back end of the rod is
Explanation of Solution
Given info: The young’s modulus of steel is
The expression for the distance of the travel by the back end of the rod.
Here,
Substitute
Conclusion:
Therefore the distance of the travel by the back end of the rod is
(d)
The strain in the rod.
(d)
Answer to Problem 17.59AP
The strain in the rod is
Explanation of Solution
Given info: The young’s modulus of steel is
The expression for the strain in the rod.
Here,
Substitute
Conclusion:
Therefore the strain in the rod is
(e)
The stress in the rod.
(e)
Answer to Problem 17.59AP
The stress in the rod is
Explanation of Solution
Given info: The young’s modulus of steel is
The expression for the stress in the rod is
Substitute
Conclusion:
Therefore the stress in the rod is
(f)
The maximum impact speed of the rod in terms of
(f)
Answer to Problem 17.59AP
The maximum impact speed of the rod in terms of
Explanation of Solution
Given info: The young’s modulus of steel is
The expression for time is,
Substitute
Thus the time is
The expression for change in length is,
The expression for the maximum impact speed of the rod is,
Substitute
Conclusion:
Therefore the maximum impact speed of the rod in terms of
Want to see more full solutions like this?
Chapter 17 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- No chatgpt pls will upvotearrow_forward1.62 On a training flight, a Figure P1.62 student pilot flies from Lincoln, Nebraska, to Clarinda, Iowa, next to St. Joseph, Missouri, and then to Manhattan, Kansas (Fig. P1.62). The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west. Use the method of components to find (a) the distance she has to fly from Manhattan to get back to Lincoln, and (b) the direction (relative to north) she must fly to get there. Illustrate your solutions with a vector diagram. IOWA 147 km Lincoln 85° Clarinda 106 km 167° St. Joseph NEBRASKA Manhattan 166 km 235° S KANSAS MISSOURIarrow_forwardPlz no chatgpt pls will upvotearrow_forward
- 3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi- raffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal dis- tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish? Figure E3.19 6.4 m/s 2.1arrow_forwardCan someone help me answer this thank you.arrow_forward1.21 A postal employee drives a delivery truck along the route shown in Fig. E1.21. Determine the magnitude and direction of the resultant displacement by drawing a scale diagram. (See also Exercise 1.28 for a different approach.) Figure E1.21 START 2.6 km 4.0 km 3.1 km STOParrow_forward
- help because i am so lost and it should look something like the picturearrow_forward3.31 A Ferris wheel with radius Figure E3.31 14.0 m is turning about a horizontal axis through its center (Fig. E3.31). The linear speed of a passenger on the rim is constant and equal to 6.00 m/s. What are the magnitude and direction of the passenger's acceleration as she passes through (a) the lowest point in her circular motion and (b) the high- est point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution?arrow_forward1.56 ⚫. Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces A, B, and C shown in Fig. P1.56. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero. Figure P1.56 B(80.0 N) 30.0 A (100.0 N) 53.0° C (40.0 N) 30.0°arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning