
(a)
Interpretation:
Density of composite is to be calculated.
Concept introduction:
Rules of mixtures is:
Where
Volume fraction is defined as:

Answer to Problem 17.29P
The requiredvalue of volume fraction of composite =
Explanation of Solution
Given information:
Weight of boron fiber in unidirectional orientation =
Weight of aluminum fiber in unidirectional orientation =
Based on given information:
Applying rule of mixing,
Calculation of volume fraction of boron is defined as the ratio of volume of boron to total volume:
Calculation of volume of boron, expressed as the ratio of mass of boron to density of boron:
Conversion of mass in gram, therefore multiplying the units by 1000 grams.
Calculation of volume of aluminum:
Calculation of volume fraction of boron and aluminum on substituting the value of volume for boron and aluminum.
Volume fraction of boron = 0.41692
Volume fraction of aluminum = 0.5830
Applying rule of mixing
(b)
Interpretation:
Modulus of elasticity parallel to fiber is to be calculated.
Concept introduction:
Modulus of elasticity is defined as the ratio of shear stress to shear strain.
Relation for modulus of elasticity is given as:

Answer to Problem 17.29P
The required value of modulus of elasticity parallel to fibers is
Explanation of Solution
Calculation of volume fraction of boron is defined as the ratio of volume of boron to total volume:
Calculation of volume of boron, expressed as the ratio of mass of boron to density of boron:
Conversion of mass in gram, therefore multiplying the units by 1000 grams:
Calculation of volume of aluminum:
Calculation of volume fraction of boron and aluminum on substituting the value of volume for boron and aluminum:
Volume fraction of boron = 0.41692
Volume fraction of aluminum = 0.5830
Substituting the following values in the formula of modulus of elasticity:
The required value of modulus of elasticity is 198239.68 MPa.
(c)
Interpretation:
Modulus of elasticity perpendicular to fiber is to be calculated.
Concept introduction:
Modulus of elasticity is defined as the ratio of shear stress to shear strain
Relation for modulus of elasticity perpendicular to fiber is given as:

Answer to Problem 17.29P
The required value of modulus of elasticity perpendicular to fibers is
Explanation of Solution
Calculation of volume fraction of boron is defined as the ratio of volume of boron to total volume:
Calculation of volume of boron, expressed as the ratio of mass of boron to density of boron:
Conversion of mass in gram, therefore multiplying the units by 1000 grams:
Calculation of volume of aluminum:
Calculation of volume fraction of boron and aluminum on substituting the value of volume for boron and aluminum:
Volume fraction of boron = 0.41692
Volume fraction of aluminum = 0.5830
Substituting the following values in the formula of modulus of elasticity
The required value of modulus of elasticity is 104719.40 MPa.
Want to see more full solutions like this?
Chapter 17 Solutions
Essentials Of Materials Science And Engineering
- Find the steady-state expression for vo(t) in the following circuit if vg (t) = 64 cos(8000t) V. 31.25 nF HE + Vg + - 2 ΚΩ Vo 500 mHarrow_forwardUse PSpice to model the differential amplifier circuit shown in Fig. 4 in DIBO mode (double input balanced output). Use 2N3904 BJTs and use appropriate values for resistors (you can choose the values that will not lead to excessive gain and saturation) to demonstrate that the circuit provides differential amplification. Use Vcc = 5 and Vee = 5. Use a pair of sinusoids with opposing polarity (180 degree phase shift) as the inputs to the differential amplifier. Recall from the theory ic is needed to compute re. Make sure that the conditions set in the analysis of DIBO circuit are satisfied. Assume Rs1 = Rs2 50 Ω. Does your simulation match the theoretical gain? Explain any differences.arrow_forwardDerive the expression for the voltage gain of DIBO differential amplifier using AC analysis.arrow_forward
- The timber floor framing for a building comprise floor joists using 2" wide nominal lumber is to be constructed as shown in Fig. 1. The Dead load (D) = 26 lbs./ft² (inclusive of joists and flooring) and the live load L= 40 lbs./ft². Lateral torsional buckling is prevented for all members and normal service conditions and temperatures are expected. (i) Design the floor joists using 2" wide nominal lumber using Southern Pine No. 1 (ii) Design the floor beams using Caribbean Pitch Pine (Select Structural). (Assume a 8" x 14” trial section to estimate beam self-weight for your initial design). Density of Caribbean Pitch Pine = 50 lbs/ft³ (800 kN/m³).arrow_forwardConsider the following circuit. + - 1.2 ΚΩ ig (1) vo ΣΕ ΚΩ € 50 nF 200 mH a) [6 pts] The frequency of the source current in the circuit is adjusted until vo is in phase with ig. What is the value of o in radians per second? (Hint: if vo is in phase with ig, the phase of total impedance must be zero (Ztot = vol ig), which means the phase of total admittance is zero. It will be easy to work with admittance in this question because the components are in parallel.) b) [2 pts] What is the total impedance at the frequency found in (a)? c) [2 pts] Ifig=2.5 cosoot mA (where o is the frequency found in [a]), what is the steady-state expression for vo?arrow_forwardP12.38 WP At a point on the free surface of a stressed body, a normal stress of 64 MPa (C) and an unknown positive shear stress exist on a horizontal plane. One principal stress at the point is 8 MPa (C). The absolute maximum shear stress at the point has a magnitude of 95 MPa. Determine the unknown stresses on the horizontal and vertical planes and the unknown principal stress at the point.arrow_forward
- Consider the following circuit with ig (t) = 200 cos(5000t) mA. 240 ΩΣ + 80 2: 2.5 µF 48 mH a) [3 pts] Obtain and draw the frequency-domain circuit. b) [3 pts] Use the current division to find the current flowing through the 240 2 resistor. c) [3 pts] Then calculate Vo in phasor form. d) [1 pts] Write the steady-state expression for vo(t).arrow_forwardList reasons why teachers should and shouldn’t be replaced by computers? State your response in a descriptive context. Provide five references from the with internet with your answers.arrow_forwardQ-Draw a sample and hold electronic circuit using op-amp then explain its operation. I hope the solution is from a human being and not from intelligencearrow_forward
- The ALU for bit 31 shown in the image supported the set on less than (slt) instruction using just the sign bit of Result31. Try this operation on the decimal values a = -7 and b = 6, using a 4-bit, 2's complement representation. Show that this example produces an incorrect value of the Set output. Therefore the Overflow output must also be used to compute Set. Modify ALU31 to handle slt correctly. Show your design on a copy of the figure.arrow_forwardDesign an AC-coupled (input and output) amplifier with a gain of -8 which has identical 3 dB corner frequencies of 10 kHz for high pass coupling at the input and output. Assume a power supply of 5 volts.arrow_forwardGiven the MIPS program below, what is the CPI for this program if "add" takes 3 cycles, "lw" take 25 cycles, and "sw" takes 5 cycles? lw $5, 0($0) lw $6, 4($0) add $7, $5, $6 sw $7, 8($0) Encode the MIPS assembly program given in problem 1 as object code specified in hex.arrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY





