
Concept explainers
(a)
The wavelength of the wave.
(a)

Answer to Problem 15PQ
The wavelength of the wave is
Explanation of Solution
Write the equation for wave function.
Here,
Compare the given equation to the Equation (17.4) and match the terms.
Here,
Write the expression from the relation between wavelength and wave number (Refer equation 17.5).
Here,
Rearrange the equation (III) for
Conclusion:
Substitute
Therefore, the wavelength of the wave is
(b)
The time period of the wave.
(b)

Answer to Problem 15PQ
The time period of the wave is
Explanation of Solution
Write the relation between
Here,
Conclusion:
Substitute
Therefore, the time period of the wave is
(c)
The speed of the wave.
(c)

Answer to Problem 15PQ
The speed of the wave is
Explanation of Solution
Write the equation for wave speed (Refer Equation 17.8).
Conclusion:
Substitute
Therefore, the speed of the wave is
(d)
The transverse velocity of a rope element.
(d)

Answer to Problem 15PQ
The transverse velocity of a rope element is
Explanation of Solution
Write the derivative form of transverse velocity at the rate of change of the y position in time.
Substitute equation (I) in the equation (VII) and differentiae it.
Conclusion:
Substitute
Write the velocity as a vector form.
Therefore, the transverse velocity of a rope element is
(e)
The transverse acceleration of a rope element.
(e)

Answer to Problem 15PQ
The transverse acceleration of a rope element is
Explanation of Solution
Write the derivative form of transverse acceleration at the rate of change of the velocity in time.
Substitute equation (VIII) in the equation (IX) and differentiae it.
Conclusion:
Substitute
Write the acceleration as a vector form.
Therefore, the acceleration of a rope element is
Want to see more full solutions like this?
Chapter 17 Solutions
Webassign Printed Access Card For Katz's Physics For Scientists And Engineers: Foundations And Connections, 1st Edition, Single-term
- Two conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forward
- A spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- The drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forwardplease solve everything in detailarrow_forward
- 6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





