
Concept explainers
(a)
The wavelength of the wave.
(a)

Answer to Problem 15PQ
The wavelength of the wave is
Explanation of Solution
Write the equation for wave function.
Here,
Compare the given equation to the Equation (17.4) and match the terms.
Here,
Write the expression from the relation between wavelength and wave number (Refer equation 17.5).
Here,
Rearrange the equation (III) for
Conclusion:
Substitute
Therefore, the wavelength of the wave is
(b)
The time period of the wave.
(b)

Answer to Problem 15PQ
The time period of the wave is
Explanation of Solution
Write the relation between
Here,
Conclusion:
Substitute
Therefore, the time period of the wave is
(c)
The speed of the wave.
(c)

Answer to Problem 15PQ
The speed of the wave is
Explanation of Solution
Write the equation for wave speed (Refer Equation 17.8).
Conclusion:
Substitute
Therefore, the speed of the wave is
(d)
The transverse velocity of a rope element.
(d)

Answer to Problem 15PQ
The transverse velocity of a rope element is
Explanation of Solution
Write the derivative form of transverse velocity at the rate of change of the y position in time.
Substitute equation (I) in the equation (VII) and differentiae it.
Conclusion:
Substitute
Write the velocity as a vector form.
Therefore, the transverse velocity of a rope element is
(e)
The transverse acceleration of a rope element.
(e)

Answer to Problem 15PQ
The transverse acceleration of a rope element is
Explanation of Solution
Write the derivative form of transverse acceleration at the rate of change of the velocity in time.
Substitute equation (VIII) in the equation (IX) and differentiae it.
Conclusion:
Substitute
Write the acceleration as a vector form.
Therefore, the acceleration of a rope element is
Want to see more full solutions like this?
Chapter 17 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- A high-speed lifting mechanism supports an 881 kg object with a steel cable that is 22.0 m long and 4.00 cm^2 in cross-sectional area. Young's modulus for steel is 20.0 ⋅10^10 Pa. Determine the elongation of the cable.arrow_forwardNamor, from Wakanda Forever, sits on a throne at the bottom of the ocean in a city called Talocan (and Atlantis in the comics). Assuming he, including his gold headdress, has a density of 1085 kg/m3 and that Namor is surrounded by salt water with a density of 1027 kg/m3, what is Namor’s normal force while sitting underwater? Take Namor’s mass as 285. kg and solve as if he has a uniform density.arrow_forwardTo get there they need to travel through an area of salt-water, which seems to also be a magical portal, before arriving in a dry area. Judging by the time Maui and Moana spend falling through the water, it seems they dive 3440. ft deep. Assume the portal is non-magical salt-water, with a density of 1027 kg/m^3. Given that the air pressure above the portal is 1.013 ⋅10^5 Pa, what is the pressure when they are 3440. ft deep? 1 m = 3.28 ft. Moana would have a surface area of 1.30 m2. How much force would be acting on her at the bottom of this portal?arrow_forward
- A plank 2.00 cm thick and 15.7 cm wide is firmly attached to the railing of a ship by clamps so that the rest of the board extends 2.00 m horizontally over the sea below. A man of mass 92.9 kg is forced to stand on the very end. If the end of the board drops by 5.97 cm because of the man's weight, find the shear modulus of the wood.arrow_forwardwhen considering particle B (4,1) distances in relation to P (-4, 5), why are the y coordinates being used gto resolve the distance along the x-axis and vice-versa?arrow_forwardA 198 kg load is hung on a wire of length of 3.58 m, cross-sectional area 2.00⋅ 10-5 m2, and Young's modulus 8.00⋅10^10 Pa. What is its increase in length?arrow_forward
- I. Pushing on a File Cabinet Bob has been asked to push a heavy file cabinet down the hall to another office. It's not on rollers, so there is a lot of friction. At time t = 0 seconds, he starts pushing it from rest with increasing force until it starts to move at t = 2 seconds. He pushes the file cabinet down the hall with varying amounts of force. The velocity versus time graph of the cabinet is shown below. A. On the graphs provided below, 1. draw the net force vs. time that would produce this velocity graph; 2. draw the friction force vs. time for this motion; 3. draw the applied force (Fon Cabinet by Bob) VS. time for this motion (the first two seconds of this graph have been drawn for you). Velocity (m/s) Applied Force (N) Friction Force (N) Net Force (N) A -m B -U time (s) D time (s) time (s) time (s)arrow_forwardanswer itarrow_forwardPlease draw a sketch and a FBDarrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





