EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
1st Edition
ISBN: 9781337684651
Author: Katz
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 14PQ

(a)

To determine

The wavelength of the wave.

(a)

Expert Solution
Check Mark

Answer to Problem 14PQ

The wavelength of the wave is 7.17m_.

Explanation of Solution

Write the equation for the wavelength.

  λ=2πk                                                                                                                 (I)

Here, λ is the wavelength and k is the wave vector.

Write the expression for the wave vector.

  k=ωv                                                                                                                  (II)

Here, ω is the angular frequency and v is the speed.

Rewrite the expression for the wavelength from equation (I) by using (II).

  λ=2π(ω/v)                                                                                                          (III)

Conclusion:

Substitute 2.34rad/s for ω and 2.67m/s for v in Equation (III) to find λ.

  λ=2π([2.34rad/s]/[2.67m/s])=2π0.876rad/m=7.17m

Thus, the wavelength of the wave is 7.17m_.

(b)

To determine

The expression for the wave function.

(b)

Expert Solution
Check Mark

Answer to Problem 14PQ

The expression for the wave function is y(x,t)=(0.346m)sin(0.876x2.34t)_.

Explanation of Solution

Write the equation of standard equation of the wave function.

  y(x,t)=ymaxsin(kxωt)                                                                            (IV)

Here, y(x,t) is the instantaneous displacement, ymax is the amplitude, x is the displacement and t is time.

Rewrite the expression for the wave function from equation (IV) by using (II).

  y(x,t)=ymaxsin((ωv)xωt)                                                                        (V)

Conclusion:

Substitute 2.34rad/s for ω, 2.67m/s for v and 34.6cm for ymax in Equation (V) to find y(x,t).

  y(x,t)=(34.6cm)sin((2.34rad/s2.67m/s)x(2.34rad/s)t)=[(34.6cm)(1×102m1cm)]sin((2.34rad/s2.67m/s)x(2.34rad/s)t)=(0.346m)sin(0.876x2.34t)

Thus, the expression for the wave function is y(x,t)=(0.346m)sin(0.876x2.34t)_.

(c)

To determine

The new wave function if the angular frequency doubled.

(c)

Expert Solution
Check Mark

Answer to Problem 14PQ

The new wave function if the angular frequency doubled is y(x,t)=(0.346m)sin(1.75x4.68t)_.

Explanation of Solution

Write the expression for the wave function from equation (IV) by using (II).

  y(x,t)=ymaxsin((ωv)xωt)                                                                           (V)

Conclusion:

Substitute 2(2.34rad/s) for ω, 2.67m/s for v and 34.6cm for ymax in Equation (V) to find y(x,t).

  y(x,t)=(34.6cm)sin((2(2.34rad/s)2.67m/s)x[2(2.34rad/s)]t)=[(34.6cm)(1×102m1cm)]sin((4.68rad/s2.67m/s)x(4.68rad/s)t)=(0.346m)sin(1.75x4.68t)

Thus, the new wave function if the angular frequency doubled is y(x,t)=(0.346m)sin(1.75x4.68t)_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Will you please walk me through the calculations in more detail for solving this problem? I am a bit rusty on calculus and confused about the specific steps of the derivation: https://www.bartleby.com/solution-answer/chapter-3-problem-15e-modern-physics-2nd-edition/9780805303087/7cf8c31d-9476-46d5-a5a9-b897b16fe6fc
please help with the abstract.  Abstract - This document outlines the format of the lab report and describes the Excel assignment. The abstract should be a short paragraph that very briefly includes the experiment objective, method, result and conclusion. After skimming the abstract, the reader should be able to decide whether they want to keep reading your work. Both the format of the report and the error analysis are to be followed. Note that abstract is not just the introduction and conclusion combined, but rather the whole experiment in short including the results. I have attacted the theory.
Using the Experimental Acceleration due to Gravity values from each data table, Data Tables 1, 2, and 3; determine the Standard Deviation, σ, mean, μ, variance, σ2 and the 95% Margin of Error (Confidence Level) Data: Ex. Acc. 1: 12.29 m/s^2. Ex. Acc. 2: 10.86 m/s^2, Ex. Acc. 3: 9.05 m/s^2

Chapter 17 Solutions

EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC

Ch. 17 - Prob. 5PQCh. 17 - Prob. 6PQCh. 17 - Prob. 7PQCh. 17 - Prob. 8PQCh. 17 - A sinusoidal traveling wave is generated on a...Ch. 17 - Prob. 10PQCh. 17 - Prob. 11PQCh. 17 - The equation of a harmonic wave propagating along...Ch. 17 - Prob. 13PQCh. 17 - Prob. 14PQCh. 17 - Prob. 15PQCh. 17 - A harmonic transverse wave function is given by...Ch. 17 - Prob. 17PQCh. 17 - Prob. 18PQCh. 17 - Prob. 19PQCh. 17 - Prob. 20PQCh. 17 - Prob. 21PQCh. 17 - Prob. 22PQCh. 17 - A wave on a string with linear mass density 5.00 ...Ch. 17 - A traveling wave on a thin wire is given by the...Ch. 17 - Prob. 25PQCh. 17 - Prob. 26PQCh. 17 - Prob. 27PQCh. 17 - Prob. 28PQCh. 17 - Prob. 29PQCh. 17 - Prob. 30PQCh. 17 - Prob. 31PQCh. 17 - Problems 32 and 33 are paired. N Seismic waves...Ch. 17 - Prob. 33PQCh. 17 - Prob. 34PQCh. 17 - Prob. 35PQCh. 17 - Prob. 36PQCh. 17 - Prob. 37PQCh. 17 - Prob. 38PQCh. 17 - Prob. 39PQCh. 17 - Prob. 40PQCh. 17 - Prob. 41PQCh. 17 - Prob. 42PQCh. 17 - Prob. 43PQCh. 17 - Prob. 44PQCh. 17 - Prob. 45PQCh. 17 - What is the sound level of a sound wave with...Ch. 17 - Prob. 47PQCh. 17 - The speaker system at an open-air rock concert...Ch. 17 - Prob. 49PQCh. 17 - Prob. 50PQCh. 17 - Prob. 51PQCh. 17 - Prob. 52PQCh. 17 - Prob. 53PQCh. 17 - Using the concept of diffraction, discuss how the...Ch. 17 - Prob. 55PQCh. 17 - Prob. 56PQCh. 17 - An ambulance traveling eastbound at 140.0 km/h...Ch. 17 - Prob. 58PQCh. 17 - Prob. 59PQCh. 17 - Prob. 60PQCh. 17 - Prob. 61PQCh. 17 - In Problem 61, a. Sketch an image of the wave...Ch. 17 - Prob. 63PQCh. 17 - Prob. 64PQCh. 17 - Prob. 65PQCh. 17 - Prob. 66PQCh. 17 - Prob. 67PQCh. 17 - Prob. 68PQCh. 17 - Prob. 69PQCh. 17 - Prob. 70PQCh. 17 - A block of mass m = 5.00 kg is suspended from a...Ch. 17 - A The equation of a harmonic wave propagating...Ch. 17 - Prob. 73PQCh. 17 - Prob. 74PQCh. 17 - Prob. 75PQCh. 17 - Prob. 76PQCh. 17 - A siren emits a sound of frequency 1.44103 Hz when...Ch. 17 - Female Aedes aegypti mosquitoes emit a buzz at...Ch. 17 - A careless child accidentally drops a tuning fork...Ch. 17 - Prob. 80PQCh. 17 - A wire with a tapered cross-sectional area is...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY
Vibrations of Stretched String; Author: PhysicsPlus;https://www.youtube.com/watch?v=BgINQpfqJ04;License: Standard Youtube License