An air ionizer fillers particles of dust, pollen, and other allergens from the air using electric forces. In one type of ionizer (see diagram), a stream of air is drawn in with a speed of 3.0 m/s. The air passes through a fine, highly charged wire mesh that transfers electric charge to the particles. Then the air passes through parallel “collector” plates that admet the charged particles and trap them in a filter. Consider a dust particle of radius 6.0 μm, mass 2.0 × 10–13 kg, and charge l000e. The plates are 10 cm long and are separated by a distance of 10 cm. (a) Ignoring drag forces, what would be the minimum potential difference between the plates to ensure that the particle gets trapped by the filter? (b) At what speed would the particle be moving relative to the stream of air just before hitting the filter? (c) Calculate the viscous drag force on the particle when moving at the speed found in (b). (d) Is it realistic to ignore drag? Taking drag into consideration, is the minimum potential difference larger or smaller than the answer to (a)?
(a)
The minimum potential difference between the plates to ensure that the particle gets trapped by the filter.
Answer to Problem 125P
The minimum potential difference between the plates to ensure that the particle gets trapped by the filter is
Explanation of Solution
Write the equation for the time taken by the dust particle to pass through the length of the collector plates.
Here,
Write the equation of motion in vertical direction.
Here,
The initial speed of the particle in the vertical direction is zero.
Substitute
Put equation (I) in equation (II).
Write the equation for the net force on the particle in the vertical direction.
Here,
Rewrite the above equation for
The net force in the vertical direction is equal to the electric force.
Write the relationship between the net force and the electric force.
Here,
Put the above equation in equation (IV).
Write the equation for the electric force.
Here,
Write the equation for the electric field.
Here,
Put the above equation in equation (VI).
Put equation (VII) in equation (V).
Equate equations (III) and (VIII) and rewrite it for
Substitute
Here,
Conclusion:
The value of
Substitute
Therefore, the minimum potential difference between the plates to ensure that the particle gets trapped by the filter is
(b)
The speed at which the particle would be moving relative to the stream of air just before hitting the filter.
Answer to Problem 125P
The speed at which the particle would be moving relative to the stream of air just before hitting the filter is
Explanation of Solution
Write the equation of motion in vertical direction.
Here,
Substitute
Put equation (II) in the above equation.
Put equation (I) in the above equation.
Conclusion:
Substitute
Therefore, the speed at which the particle would be moving relative to the stream of air just before hitting the filter is
(c)
The viscous drag force on the particle when moving at the speed found in part (b).
Answer to Problem 125P
The viscous drag force on the particle when moving at the speed found in part (b) is
Explanation of Solution
Write the equation for the drag force.
Here,
Conclusion:
The viscosity of air is
Substitute
Therefore, the viscous drag force on the particle when moving at the speed found in part (b) is
(d)
Whether it is realistic to ignore the drag and whether the minimum potential difference larger or smaller than the answer to part (a) when drag is considered.
Answer to Problem 125P
It is not realistic to ignore the drag and the minimum potential difference should be larger when drag is considered.
Explanation of Solution
It is realistic to ignore the drag if the drag force is much smaller than the electric force.
Substitute
Conclusion:
Substitute
The value of
Therefore, it is not realistic to ignore the drag and the minimum potential difference should be larger when drag is considered.
Want to see more full solutions like this?
Chapter 17 Solutions
PHYSICS
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning