Fundamentals of Thermal-Fluid Sciences
Fundamentals of Thermal-Fluid Sciences
5th Edition
ISBN: 9780078027680
Author: Yunus A. Cengel Dr., Robert H. Turner, John M. Cimbala
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 17, Problem 122RQ

(a)

To determine

The thickness of the insulation needed to reduce the heat loss by 95 percent.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

Thermal conductivity of the steel pipe (k) is 61 W/mK.

Heat transfer coefficient inside the pipe (h1) is 105 W/m2K.

Heat transfer coefficient outside the pipe (h2) is 14 W/m2K.

Inner diameter of the pipe (Di) is 10 cm.

Outer diameter of the pipe (Do) is 12 cm.

Calculation:

Determine the inner surface area of the pipe.

  A1=πDiL=π(0.1 m)(1 m)=0.3142 m2

Determine the outer surface area of the pipe.

  A2=πDoL=π(0.12 m)(1 m)=0.377 m2

Determine the surface area of the insulation.

  A3=πD3L=πD3(1 m)=3.1416D3 m2

Determine the individual thermal resistances.

  Ri=1hiAi=1(105 W/m2°C)(0.3142 m2)=0.03031 °C/W

  R1=Rpipe =ln(r2/r1)2πk1L=ln(6 cm5 cm)2π(61 W/m°C)(1 m)=0.00048 °C/W

  R2=Rinsulation =ln(r3/r2)2πk2L=ln(D3/0.12)2π(0.038 W/m°C)(1 m)=ln(D3/0.12)0.23876 °C/W

  Ro,steel =1hoAo=1(14 W/m2°C)(0.3770 m2)=0.18947 °C/W

  Roinsulation=1h0A0=1(14 W/m2°C)(3.1416D3 m2)=0.02274D3 °C/W

  Rtotal no insulation =Ri+R1+Ro.steel =0.03031 °C/W+0.00048 °C/W+0.18947 °C/W=0.22026 °C/W

  Rtotal insulation =Ri+R1+R2+Ro,insulation =0.03031+0.00048+ln(D3/0.12)0.23876+0.02274D3=0.03079+ln(D3/0.12)0.23876+0.02274D3 °C/W

Determine the steady rate of heat loss from the steam per meter pipe length in case of no insulation.

  Q˙=T1T2Rtotal=235°C20°C0.22026 °C/W=976.1 W

Determine the diameter of insulated material.

  Q˙insulation =T1T2Rtotal insulation (0.05×976.1)W=235°C20°C(0.03079+ln(D3/0.12)0.23876+0.02274D3) °C/WD3=0.3355 m

Determine the thickness of insulation.

  t=D3D22=33.55 cm12 cm2=10.8 cm

Thus, the thickness of insulation is 10.8 cm_.

(b)

To determine

The thickness of the insulation needed to reduce the exposed surface temperature of insulated pipe to 40°C.

(b)

Expert Solution
Check Mark

Explanation of Solution

Determine the diameter of insulated material.

  Q˙insulation =T1T2Rtotal insulation Q˙insulation =T2T2Ro, insulation (235°C20°C)(0.03079 °C/W+ln(D3/0.12)0.23876+0.02274D3)=(40°C20°C)0.02274D3 °C/WD3=0.1644 m

Determine the thickness of the insulation.

  t=D3D22=16.44 cm12 cm2=2.22 cm

Thus, the thickness of insulation is 2.22 cm_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm.
Q1/ A vertical, circular gate with water on one side as shown. Determine the total resultant force acting on the gate and the location of the center of pressure, use water specific weight 9.81 kN/m³ 1 m 4 m
I need handwritten solution with sketches for each

Chapter 17 Solutions

Fundamentals of Thermal-Fluid Sciences

Ch. 17 - Consider a surface of area A at which the...Ch. 17 - How does the thermal resistance network associated...Ch. 17 - Consider steady one-dimensional heat transfer...Ch. 17 - Consider a window glass consisting of two...Ch. 17 - Prob. 15PCh. 17 - Prob. 16PCh. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Consider a power transistor that dissipates 0.2 W...Ch. 17 - A 1.0 m × 1.5 m double-pane window consists of two...Ch. 17 - Consider a 1.2-m-high and 2-m-wide glass window...Ch. 17 - Prob. 23PCh. 17 - Prob. 24PCh. 17 - Prob. 26PCh. 17 - Prob. 27PCh. 17 - Prob. 28PCh. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - A 2-m × 1.5-m section of wall of an industrial...Ch. 17 - The wall of a refrigerator is constructed of...Ch. 17 - Prob. 34PCh. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - What is thermal contact resistance? How is it...Ch. 17 - Will the thermal contact resistance be greater for...Ch. 17 - Explain how the thermal contact resistance can be...Ch. 17 - A wall consists of two layers of insulation...Ch. 17 - A plate consists of two thin metal layers pressed...Ch. 17 - Consider two surfaces pressed against each other....Ch. 17 - Prob. 43PCh. 17 - Prob. 44PCh. 17 - Prob. 45PCh. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - Prob. 48PCh. 17 - Prob. 49PCh. 17 - Prob. 50PCh. 17 - Prob. 51PCh. 17 - Prob. 52PCh. 17 - Prob. 53PCh. 17 - When plotting the thermal resistance network...Ch. 17 - Prob. 55PCh. 17 - Prob. 56PCh. 17 - Prob. 57PCh. 17 - A typical section of a building wall is shown in...Ch. 17 - Prob. 59PCh. 17 - Prob. 61PCh. 17 - Prob. 62PCh. 17 - Prob. 63PCh. 17 - In an experiment to measure convection heat...Ch. 17 - What is an infinitely long cylinder? When is it...Ch. 17 - Can the thermal resistance concept be used for a...Ch. 17 - Consider a short cylinder whose top and bottom...Ch. 17 - Prob. 68PCh. 17 - 50-m-long section of a steam pipe whose outer...Ch. 17 - Superheated steam at an average temperature 200°C...Ch. 17 - Steam exiting the turbine of a steam power plant...Ch. 17 - Repeat Prob. 17–72E, assuming that a 0.01-in-thick...Ch. 17 - A 2.2-mm-diameter and 10-m-long electric wire is...Ch. 17 - Prob. 76PCh. 17 - Chilled water enters a thin-shelled 5-cm-diameter,...Ch. 17 - Steam at 450°F is flowing through a steel pipe (k...Ch. 17 - Prob. 79PCh. 17 - Prob. 80PCh. 17 - An 8-m-internal-diameter spherical tank made of...Ch. 17 - What is the critical radius of insulation? How is...Ch. 17 - Consider an insulated pipe exposed to the...Ch. 17 - A pipe is insulated to reduce the heat loss from...Ch. 17 - Prob. 86PCh. 17 - Prob. 87PCh. 17 - A 0.083-in-diameter electrical wire at 90°F is...Ch. 17 - Prob. 89PCh. 17 - Prob. 90PCh. 17 - Prob. 92PCh. 17 - What is the reason for the widespread use of fins...Ch. 17 - What is the difference between the fin...Ch. 17 - The fins attached to a surface are determined to...Ch. 17 - Explain how the fins enhance heat transfer from a...Ch. 17 - How does the overall effectiveness of a finned...Ch. 17 - Hot water is to be cooled as it flows through the...Ch. 17 - Consider two finned surfaces that are identical...Ch. 17 - The heat transfer surface area of a fin is equal...Ch. 17 - Prob. 101PCh. 17 - Prob. 102PCh. 17 - Two plate fins of constant rectangular cross...Ch. 17 - Two finned surfaces are identical, except that the...Ch. 17 - A 4-mm-diameter and 10-cm-long aluminum fin (k =...Ch. 17 - Consider a very long rectangular fin attached to a...Ch. 17 - Consider a stainless steel spoon (k = 8.7...Ch. 17 - A DC motor delivers mechanical power to a rotating...Ch. 17 - A plane wall with surface temperature of 350°C is...Ch. 17 - Prob. 111PCh. 17 - Steam in a heating system flows through tubes...Ch. 17 - Prob. 113PCh. 17 - A hot surface at 100°C is to be cooled by...Ch. 17 - Prob. 116PCh. 17 - A 40-W power transistor is to be cooled by...Ch. 17 - Prob. 118PCh. 17 - Prob. 119RQCh. 17 - Cold conditioned air at 12°C is flowing inside a...Ch. 17 - Prob. 121RQCh. 17 - Prob. 122RQCh. 17 - Prob. 123RQCh. 17 - Prob. 124RQCh. 17 - Prob. 125RQCh. 17 - Prob. 126RQCh. 17 - Prob. 127RQCh. 17 - Prob. 128RQCh. 17 - Prob. 129RQCh. 17 - Prob. 130RQCh. 17 - Prob. 131RQ
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license