For Exercises 111-112, a. Graph the function. b. Write the domain in interval notation. c. Write the range in interval notation. d. Evaluate f − 1 , f 1 , and f 2 . e. Find the value(s) of x for which f x = 6. f. Find the value(s) of x for which f x = − 3. g. Use interval notation to write the intervals over which f is increasing, decreasing, or constant. f x = − x 2 + 1 for x ≤ 1 2 x for x > 1
For Exercises 111-112, a. Graph the function. b. Write the domain in interval notation. c. Write the range in interval notation. d. Evaluate f − 1 , f 1 , and f 2 . e. Find the value(s) of x for which f x = 6. f. Find the value(s) of x for which f x = − 3. g. Use interval notation to write the intervals over which f is increasing, decreasing, or constant. f x = − x 2 + 1 for x ≤ 1 2 x for x > 1
Solution Summary: The author explains that the graph of the given function is: (a) to graph the function's domain, and (b) determine its range in interval notation.
4. Which substitution would you use to simplify the following integrand? S
a) x = sin
b) x = 2 tan 0
c) x = 2 sec
3√√3
3
x3
5. After making the substitution x = =
tan 0, the definite integral
2
2
3
a) ៖ ស្លឺ sin s
π
- dᎾ
16 0 cos20
b) 2/4 10 cos 20
π
sin30
6
- dᎾ
c)
Π
1 cos³0
3
· de
16 0 sin20
1
x²√x²+4
3
(4x²+9)2
π
d) cos²8
16 0 sin³0
dx
d) x = tan 0
dx simplifies to:
de
6. In order to evaluate (tan 5xsec7xdx, which would be the most appropriate strategy?
a) Separate a sec²x factor b) Separate a tan²x factor c) Separate a tan xsecx factor
7. Evaluate
3x
x+4
- dx
1
a) 3x+41nx + 4 + C b) 31n|x + 4 + C c)
3 ln x + 4+ C d) 3x - 12 In|x + 4| + C
x+4
1. Abel's Theorem. The goal in this problem is to prove Abel's theorem by following a series of steps
(each step must be justified).
Theorem 0.1 (Abel's Theorem).
If y1 and y2 are solutions of the differential equation
y" + p(t) y′ + q(t) y = 0,
where p and q are continuous on an open interval, then the Wronskian is given by
W (¥1, v2)(t) = c exp(− [p(t) dt),
where C is a constant that does not depend on t. Moreover, either W (y1, y2)(t) = 0 for every t in I or
W (y1, y2)(t) = 0 for every t in I.
1. (a) From the two equations (which follow from the hypotheses),
show that
y" + p(t) y₁ + q(t) y₁ = 0 and y½ + p(t) y2 + q(t) y2 = 0,
2. (b) Observe that
Hence, conclude that
(YY2 - Y1 y2) + P(t) (y₁ Y2 - Y1 Y2) = 0.
W'(y1, y2)(t) = yY2 - Y1 y2-
W' + p(t) W = 0.
3. (c) Use the result from the previous step to complete the proof of the theorem.
2. Observations on the Wronskian. Suppose the functions y₁ and y2 are solutions to the differential
equation
p(x)y" + q(x)y' + r(x) y = 0
on an open interval I.
1. (a) Prove that if y₁ and y2 both vanish at the same point in I, then y₁ and y2 cannot form a
fundamental set of solutions.
2. (b) Prove that if y₁ and y2 both attain a maximum or minimum at the same point in I, then y₁ and
Y2 cannot form a fundamental set of solutions.
3. (c) show that the functions & and t² are linearly independent on the interval (−1, 1). Verify that
both are solutions to the differential equation
t² y″ – 2ty' + 2y = 0.
Then justify why this does not contradict Abel's theorem.
4. (d) What can you conclude about the possibility that t and t² are solutions to the differential
equation
y" + q(x) y′ + r(x)y = 0?
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Grade 12 and UG/ Introduction to logical statements and truth tables; Author: Dr Trefor Bazett;https://www.youtube.com/watch?v=q2eyZZK-OIk;License: Standard YouTube License, CC-BY