Double integrals—transformation given To evaluate the following integrals, carry out these steps. a. Sketch the original region of integration R in the xy-plane and the new region S in the uv-plane using the given change of variables. b. Find the limits of integration for the new integral with respect to u and v. c. Compute the Jacobian. d. Change variables and evaluate the new integral. 30. ∬ R x y d A , where R is bounded by the ellipse 9 x 2 + 4 y 2 = 36; use x = 2 u , y = 3 v.
Double integrals—transformation given To evaluate the following integrals, carry out these steps. a. Sketch the original region of integration R in the xy-plane and the new region S in the uv-plane using the given change of variables. b. Find the limits of integration for the new integral with respect to u and v. c. Compute the Jacobian. d. Change variables and evaluate the new integral. 30. ∬ R x y d A , where R is bounded by the ellipse 9 x 2 + 4 y 2 = 36; use x = 2 u , y = 3 v.
Double integrals—transformation givenTo evaluate the following integrals, carry out these steps.
a. Sketch the original region of integration R in the xy-plane and the new region S in the uv-plane using the given change of variables.
b. Find the limits of integration for the new integral with respect to u and v.
c. Compute the Jacobian.
d. Change variables and evaluate the new integral.
30.
∬
R
x
y
d
A
, where R is bounded by the ellipse 9x2 + 4y2 = 36; use x = 2u, y = 3v.
With differentiation, one of the major concepts of calculus. Integration involves the calculation of an integral, which is useful to find many quantities such as areas, volumes, and displacement.
A factorization A = PDP 1 is not unique. For A=
7 2
-4 1
1
1
5 0
2
1
one factorization is P =
D=
and P-1
30
=
Use this information with D₁
=
to find a matrix P₁ such that
-
-1 -2
0 3
1
-
- 1
05
A-P,D,P
P1
(Type an integer or simplified fraction for each matrix element.)
Matrix A is factored in the form PDP 1. Use the Diagonalization Theorem to find the eigenvalues of A and a basis for each eigenspace.
30 -1
-
1 0 -1
400
0
0 1
A=
3 4 3
0 1 3
040
3 1 3
0 0
4
1
0
0
003
-1 0 -1
Select the correct choice below and fill in the answer boxes to complete your choice.
(Use a comma to separate vectors as needed.)
A basis for the corresponding eigenspace is {
A. There is one distinct eigenvalue, λ =
B. In ascending order, the two distinct eigenvalues are λ₁
...
=
and 2
=
Bases for the corresponding eigenspaces are {
and ( ), respectively.
C. In ascending order, the three distinct eigenvalues are λ₁ =
=
12/2
=
and 3 = Bases for the corresponding eigenspaces are
{}, }, and {
respectively.
N Page
0.6.
0.4.
0.2-
-0.2-
-0.4-
-6.6
-5
W
10
Chapter 16 Solutions
Calculus: Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
University Calculus: Early Transcendentals (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY