Organic Chemistry 3rd.ed. Klein Evaluation/desk Copy
Organic Chemistry 3rd.ed. Klein Evaluation/desk Copy
3rd Edition
ISBN: 9781119320524
Author: Klein
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16.7, Problem 18CC

(a)

Interpretation Introduction

Interpretation:

The major product for the given reaction has to be determined.

Concept introduction:

  • Cycloaddition reaction is a concerted addition reaction of two reactants to form a ring; in which two π-bonds are converted to two σ-bonds.
  • Diels-Alder reaction is a [4+2] cycloaddition reaction between a diene and a dienophile producing a substituted cyclohexene.
  • The mechanism of the ring formation in the Diels-Alder reaction is drawn by using three arrows representing the shifting of π-bonds in the two π-systems in a clockwise or counter clockwise fashion, so that the ring formation will take place.
  • The configuration of dienophile will be retaining in the product.

Regiochemistry in Diels-Alder reaction:

While forming the product in the Diels Alder reaction, the strongest electron withdrawing group on the dienophile and the strongest electron donating group on the diene will be either 1,2or1,4 disubstituted.

Organic Chemistry 3rd.ed. Klein Evaluation/desk Copy, Chapter 16.7, Problem 18CC , additional homework tip  1

Organic Chemistry 3rd.ed. Klein Evaluation/desk Copy, Chapter 16.7, Problem 18CC , additional homework tip  2

(b)

Interpretation Introduction

Interpretation:

The major product for the given reaction has to be determined.

Concept introduction:

  • Cycloaddition reaction is a concerted addition reaction of two reactants to form a ring; in which two π-bonds are converted to two σ-bonds.
  • Diels-Alder reaction is a [4+2] cycloaddition reaction between a diene and a dienophile producing a substituted cyclohexene.
  • The mechanism of the ring formation in the Diels-Alder reaction is drawn by using three arrows representing the shifting of π-bonds in the two π-systems in a clockwise or counter clockwise fashion, so that the ring formation will take place.
  • The configuration of dienophile will be retaining in the product.

(c)

Interpretation Introduction

Interpretation:

The major product for the given reaction has to be determined.

Concept introduction:

  • Cycloaddition reaction is a concerted addition reaction of two reactants to form a ring; in which two π-bonds are converted to two σ-bonds.
  • Diels-Alder reaction is a [4+2] cycloaddition reaction between a diene and a dienophile producing a substituted cyclohexene.
  • The mechanism of the ring formation in the Diels-Alder reaction is drawn by using three arrows representing the shifting of π-bonds in the two π-systems in a clockwise or counter clockwise fashion, so that the ring formation will take place.
  • The configuration of dienophile will be retaining in the product.
  • Endo-product is the major product in bicyclic-products of Diels-Alder reaction; because the electron-withdrawing substituents of dienophile and the newly forming π-bond of diene are interacted each other.

(d)

Interpretation Introduction

Interpretation:

The major product for the given reaction has to be determined.

Concept introduction:

  • Cycloaddition reaction is a concerted addition reaction of two reactants to form a ring; in which two π-bonds are converted to two σ-bonds.
  • Diels-Alder reaction is a [4+2] cycloaddition reaction between a diene and a dienophile producing a substituted cyclohexene.
  • The mechanism of the ring formation in the Diels-Alder reaction is drawn by using three arrows representing the shifting of π-bonds in the two π-systems in a clockwise or counter clockwise fashion, so that the ring formation will take place.
  • The configuration of dienophile will be retaining in the product.

(e)

Interpretation Introduction

Interpretation:

The major product for the given reaction has to be determined.

Concept introduction:

  • Cycloaddition reaction is a concerted addition reaction of two reactants to form a ring; in which two π-bonds are converted to two σ-bonds.
  • Diels-Alder reaction is a [4+2] cycloaddition reaction between a diene and a dienophile producing a substituted cyclohexene.
  • The mechanism of the ring formation in the Diels-Alder reaction is drawn by using three arrows representing the shifting of π-bonds in the two π-systems in a clockwise or counter clockwise fashion, so that the ring formation will take place.
  • The configuration of dienophile will be retaining in the product.

Blurred answer
Students have asked these similar questions
#1. Retro-Electrochemical Reaction: A ring has been made, but the light is causing the molecule to un- cyclize. Undo the ring into all possible molecules. (2pts, no partial credit) hv
Don't used Ai solution
I have a question about this problem involving mechanisms and drawing curved arrows for acids and bases. I know we need to identify the nucleophile and electrophile, but are there different types of reactions? For instance, what about Grignard reagents and other types that I might not be familiar with? Can you help me with this? I want to identify the names of the mechanisms for problems 1-14, such as Gilman reagents and others. Are they all the same? Also, could you rewrite it so I can better understand? The handwriting is pretty cluttered. Additionally, I need to label the nucleophile and electrophile, but my main concern is whether those reactions differ, like the "Brønsted-Lowry acid-base mechanism, Lewis acid-base mechanism, acid-catalyzed mechanisms, acid-catalyzed reactions, base-catalyzed reactions, nucleophilic substitution mechanisms (SN1 and SN2), elimination reactions (E1 and E2), organometallic mechanisms, and so forth."

Chapter 16 Solutions

Organic Chemistry 3rd.ed. Klein Evaluation/desk Copy

Ch. 16.5 - Prob. 9PTSCh. 16.5 - Prob. 10PTSCh. 16.5 - Prob. 11ATSCh. 16.5 - Prob. 12CCCh. 16.7 - Prob. 3LTSCh. 16.7 - Prob. 13PTSCh. 16.7 - Prob. 14ATSCh. 16.7 - Prob. 15CCCh. 16.7 - Prob. 16CCCh. 16.7 - Prob. 17CCCh. 16.7 - Predict the regiochemical outcome (major product)...Ch. 16.8 - Prob. 19CCCh. 16.9 - Prob. 20CCCh. 16.9 - Prob. 4LTSCh. 16.9 - Prob. 21PTSCh. 16.9 - Prob. 22ATSCh. 16.10 - Prob. 23CCCh. 16.10 - Prob. 24CCCh. 16.10 - Prob. 25CCCh. 16.10 - Prob. 26CCCh. 16.11 - Prob. 5LTSCh. 16.11 - Prob. 27PTSCh. 16.11 - Prob. 28ATSCh. 16.12 - Prob. 29CCCh. 16 - Prob. 30PPCh. 16 - Prob. 31PPCh. 16 - Prob. 32PPCh. 16 - Prob. 33PPCh. 16 - Prob. 34PPCh. 16 - Prob. 35PPCh. 16 - Prob. 36PPCh. 16 - Prob. 37PPCh. 16 - Prob. 38PPCh. 16 - Prob. 39PPCh. 16 - Prob. 40PPCh. 16 - Prob. 41PPCh. 16 - Prob. 42PPCh. 16 - Prob. 43PPCh. 16 - Prob. 44PPCh. 16 - Prob. 45PPCh. 16 - Prob. 46PPCh. 16 - Prob. 47PPCh. 16 - Prob. 48PPCh. 16 - Prob. 49PPCh. 16 - Prob. 50PPCh. 16 - Prob. 51PPCh. 16 - Prob. 52PPCh. 16 - Prob. 53PPCh. 16 - Prob. 54PPCh. 16 - Prob. 55PPCh. 16 - Prob. 56PPCh. 16 - Prob. 57PPCh. 16 - Prob. 58PPCh. 16 - Prob. 59PPCh. 16 - Prob. 60IPCh. 16 - Prob. 61IPCh. 16 - Prob. 62IPCh. 16 - Prob. 63IPCh. 16 - Prob. 64IPCh. 16 - Prob. 65IPCh. 16 - Prob. 66IPCh. 16 - Prob. 67IPCh. 16 - Prob. 68IPCh. 16 - Prob. 69IPCh. 16 - Prob. 70IPCh. 16 - Prob. 71IPCh. 16 - Prob. 72IPCh. 16 - Prob. 73IPCh. 16 - Prob. 74IPCh. 16 - Prob. 76IPCh. 16 - Prob. 77CPCh. 16 - Prob. 78CPCh. 16 - Prob. 79CPCh. 16 - Prob. 80CPCh. 16 - Prob. 81CP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
IR Spectroscopy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=_TmevMf-Zgs;License: Standard YouTube License, CC-BY