(a)
The logarithm equilibrium constant for the reaction at
Compare the results for the values of
(a)
Answer to Problem 19P
The logarithm equilibrium constant for the reaction at
The equilibrium constant obtained from the equilibrium constants of Table A-28 at 1440Ris
Explanation of Solution
Express the standard-state Gibbs function change.
Here, the Gibbs function of components
Write the equation to calculate the natural logarithms of equilibrium constant for the chemical equilibrium of ideal-gas mixtures.
Here, universal gas constant is
Write the equation to calculate the equilibrium constant for the chemical equilibrium of ideal-gas mixtures.
Conclusion:
From the equilibrium reaction, the values of
Refer Table A-26, obtain the values of
Substitute 1 for
Substitute
Substitute
Thus, the equilibrium constant obtained from the equilibrium reaction at 298 K is
Refer Table A-28, “Natural logarithms of the equilibrium constant” obtain the equilibrium constant for the reaction at the temperature of 298 K as
Substitute
Thus, the equilibrium constant obtained from the table A-28 at 1440 R is
The value obtained for equilibrium constant at 298 K from the definition of the equilibrium constant is
(b)
The logarithm equilibrium constant for the reaction at 2000 K.
Compare the results for the values of
(b)
Answer to Problem 19P
The logarithm equilibrium constant for the reaction at 2000 K is
The equilibrium constant obtained from the equilibrium constants of Table A-28 at 2000K is.
Explanation of Solution
Express the standard-state Gibbs function change.
Here, the Gibbs function of components
Write the equation to calculate the natural logarithms of equilibrium constant for the chemical equilibrium of ideal-gas mixtures.
Here, universal gas constant is
Write the equation to calculate the equilibrium constant for the chemical equilibrium of ideal-gas mixtures.
Conclusion:
From the equilibrium reaction, the values of
Refer Table A-26, obtain the values of
Refer to Table A-22, obtain the value of
Refer to Table A-22, obtain the value of
Refer to Table A-19E, obtain the value of
Refer to Table A-19E, obtain the value of
Refer to Table A-23, obtain the value of
Refer to Table A-23, obtain the value of
Substitute 1 for
Substitute
Substitute
Thus, the equilibrium constant obtained from the equilibrium reaction at 2000K is
Refer Table A-28, “Natural logarithms of the equilibrium constant” obtain the equilibrium constant for the reaction by interpolating for the temperature of 2000 K as
Substitute
Thus, the equilibrium constant obtained from the table A-28 at2000K is
The value obtained for equilibrium constant at 2000K from the definition of the equilibrium constant is
Want to see more full solutions like this?
Chapter 16 Solutions
CENGEL'S 9TH EDITION OF THERMODYNAMICS:
- Draw left view of the first orthographic projectionarrow_forwardSketch and Describe a timing diagram for a 2 stroke diesel engine emphasis on the 2 stroke as my last answer explained 4 stroke please include a diagram or sketch.arrow_forwardA 4 ft 200 Ib 1000 Ib.ft C 2 ft 350 Ib - за в 2.5 ft 150 Ib 250 Ib 375 300 Ib Replace the force system acting on the frame. shown in the figure by a resultant force (magnitude and direction), and specify where its line of action intersects member (AB), measured from point (A).arrow_forward
- A continuous flow calorimeter was used to obtain the calorific value of a sample of fuel and the following data collected: Mass of fuel: 2.25 kgInlet water temperature: 11 ° COutlet water temperature 60 ° CQuantity of water: 360 Liters Calorimeter efficiency: 85%Calculate the calorific value of the sample ( kJ / kg ). ive submitted this question twice and have gotten two way different answers. looking for some help thanksarrow_forward15 kg of steel ball bearings at 100 ° C is immersed in 25 kg of water at 20 ° C . Assuming no loss of heat to or from the container, calculate the final temperature of the water after equilibrium has been attained.Specific heat of steel: 0.4857 kJ / kg / ° KSpecific heat of water: 4.187 kJ / kg / ° Karrow_forwardSketch and explain a PV Diagram and a Temperature Entropy Diagram for a 4 stroke diesel enginearrow_forward
- A continuous flow calorimeter was used to obtain the calorific value of a sample of fuel and the following data collected: Mass of fuel: 2.25 kgInlet water temperature: 11 ° COutlet water temperature 60 ° CQuantity of water: 360 Liters Calorimeter efficiency: 85%Calculate the calorific value of the sample ( kJ / kg ).arrow_forwardChapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... Scoresarrow_forwardmylabmastering.pearson.com Chapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... P Pearson MyLab and Mastering Scoresarrow_forwardanswer the fallowing Brake Specific Fuel Consumption - 0.3 kg/kwh, Mechanical Efficiency- 90% Calorific Value of Fuel -45 MJ/kg. Given these values, find the indicated power, indicated thermal efficiency and brake thermal efficiencyarrow_forwardProblem 6. The circular plate shown rotates about its vertical diameter. At the instant shown, the angular velocity ₁ of the plate is 10 rad/s and is decreasing at the rate of 25 rad/s². The disk lies in the XY plane and Point D of strap CD moves upward. The relative speed u of Point D of strap CD is 1.5 m/s and is decreasing at the rate of 3 m/s². Determine (a) the velocity of D, (b) the acceleration of D. Answers: =0.75 +1.299]-1.732k m/s a=-28.6 +3.03-10.67k m/s² 200 mm x Zarrow_forwardProblem 1. The flywheel A has an angular velocity o 5 rad/s. Link AB is connected via ball and socket joints to the flywheel at A and a slider at B. Find the angular velocity of link AB and the velocity of slider B at this instant. (Partial Answer: @ABN = -2î + 2.25; red Z -1.2 ft C -7 Y -1.5 ft- B 2.0 ftarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill EducationControl Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY