Concept explainers
(a)
Interpretation:
The pOH of the given aqueous solutions at
Concept Information:
Strong bases:
Strong bases are formed from alkali metals and alkaline earth metals of Group IA and IIA respectively.
Strong base dissociates into its constituent ions.
For Group IA metal hydroxides, the hydroxide ion concentration is simply the initial concentration of the strong base
For Group IIA metal hydroxides, the hydroxide ion concentration at equilibrium will be twice that of the initial concentration of strong base
pOH definition:
The
On rearranging, the concentration of hydroxide ion
To Calculate: The pOH of the aqueous solution with
(b)
Interpretation:
The pOH of the given aqueous solutions at
Concept Information:
Strong bases:
Strong bases are formed from alkali metals and alkaline earth metals of Group IA and IIA respectively.
Strong base dissociates into its constituent ions.
For Group IA metal hydroxides, the hydroxide ion concentration is simply the initial concentration of the strong base
For Group IIA metal hydroxides, the hydroxide ion concentration at equilibrium will be twice that of the initial concentration of strong base
pOH definition:
The
On rearranging, the concentration of hydroxide ion
To Calculate: The pOH of the aqueous solution with
(c)
Interpretation:
The pOH of the given aqueous solutions at
Concept Information:
Strong bases:
Strong bases are formed from alkali metals and alkaline earth metals of Group IA and IIA respectively.
Strong base dissociates into its constituent ions.
For Group IA metal hydroxides, the hydroxide ion concentration is simply the initial concentration of the strong base
For Group IIA metal hydroxides, the hydroxide ion concentration at equilibrium will be twice that of the initial concentration of strong base
pOH definition:
The
On rearranging, the concentration of hydroxide ion
To Calculate: The pOH of the aqueous solution with
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Chemistry: Atoms First
- Explain why the representation of a one-dimensional velocity distribution function for a particular gas becomes flatter as the temperature increases.arrow_forwardDraw a Lewis structure for each of the following molecules and assign charges where appropriate. The order in which the atoms are connected is given in parentheses. a. CIFCIF b. BrCNBrCN 0 c. SOCI2 × (CISCIO) SOC₁₂ (CISCI) You can draw both an octet and a valence shell expanded structure. Considering the following structural information, which is the better one: The measured S-OS-O bond length in SOC12SOCl2 is 1.43 Å. For comparison, that in SO2SO2 is 1.43 Å [Exercise 1-9, part (b)], that in CHзSOHCH3 SOH d. CH3NH2CH3NH2 (methanesulfenic acid) is 1.66 A. e. CH3OCH3 CH3 OCH3 NH2 f. N2H2× (HNNH) N2 H2 (HNNH) g. CH2COCH₂ CO h. HN3× (HNNN) HN3 (HNNN) i. N20 × (NNO) N2O (NNO)arrow_forwardbre The reaction sequence shown in Scheme 5 demonstrates the synthesis of a substituted benzene derivative Q. wolsd works 2 NH2 NaNO2, HCI (apexe) 13× (1 HNO3, H2SO4 C6H5CIN2 0°C HOTE CHINO₂ N O *O₂H ( PO Q Я Scheme 5 2 bag abouoqmics to sounde odi WEIC (i) Draw the structure of intermediate O. [2 marks] to noitsmot od: tot meinedogm, noit so oft listsb ni zaupaib bas wa (ii) Draw the mechanism for the transformation of aniline N to intermediate O. Spoilage (b) [6 marks] (iii) Identify the reagent X used to convert compound O to the iodinated compound [tom E P. vueimado oilovonsa ni moitos nolisbnolov ayd toes ai tedw nisiqx (iv) Identify the possible structures of compound Q. [2 marks] [2 marks] [shom 2] (v) bus noires goiribbeolovo xnivollot adj to subora sidab Draw the mechanism for the transformation of intermediate P to compound Q. [5 marks] vi (vi) Account for the regiochemical outcome observed in the reaction forming compound Q. [3 marks]arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardThe vibrational contribution isa) temperature independent for internal energy and heat capacityb) temperature dependent for internal energy and heat capacityc) temperature independent for heat capacityd) temperature independent for internal energyarrow_forwardQuantum mechanics. Explain the basis of approximating the summation to an integral in translational motion.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning