EBK BASIC TECHNICAL MATHEMATICS
11th Edition
ISBN: 9780134508290
Author: Evans
Publisher: PEARSON CUSTOM PUB.(CONSIGNMENT)
expand_more
expand_more
format_list_bulleted
Question
Chapter 16.5, Problem 29E
To determine
Solve the system of equations using Gaussian elimination and show that the result is the same obtained using Cramer’s rule.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6.
(i)
Sketch the trace of the following curve on R²,
(t) = (sin(t), 3 sin(t)),
tЄ [0, π].
[3 Marks]
Total marks 10
(ii)
Find the length of this curve.
[7 Marks]
helppp
7.
Let F(x1, x2) (F₁(x1, x2), F2(x1, x2)), where
=
X2
F1(x1, x2)
X1
F2(x1, x2)
x+x
(i) Using the definition, calculate the integral
LF.dy,
where (t) = (cos(t), sin(t)) and t = [0,2].
[5 Marks]
(ii) Explain why Green's Theorem cannot be used to find the
integral in part (i).
[5 Marks]
Chapter 16 Solutions
EBK BASIC TECHNICAL MATHEMATICS
Ch. 16.1 - For matrices A and B, find A + B.
Ch. 16.1 - Prob. 2PECh. 16.1 - Prob. 3PECh. 16.1 - Prob. 1ECh. 16.1 - Prob. 2ECh. 16.1 - Prob. 3ECh. 16.1 - Prob. 4ECh. 16.1 - In Exercises 3–10, determine the value of the...Ch. 16.1 - Prob. 6ECh. 16.1 - Prob. 7E
Ch. 16.1 - Prob. 8ECh. 16.1 - In Exercises 3–10, determine the value of the...Ch. 16.1 - Prob. 10ECh. 16.1 - Prob. 11ECh. 16.1 - Prob. 12ECh. 16.1 - Prob. 13ECh. 16.1 - Prob. 14ECh. 16.1 - Prob. 15ECh. 16.1 - Prob. 16ECh. 16.1 - Prob. 17ECh. 16.1 - Prob. 18ECh. 16.1 - Prob. 19ECh. 16.1 - Prob. 20ECh. 16.1 - Prob. 21ECh. 16.1 - Prob. 22ECh. 16.1 - Prob. 23ECh. 16.1 - Prob. 24ECh. 16.1 - Prob. 25ECh. 16.1 - Prob. 26ECh. 16.1 - Prob. 27ECh. 16.1 - Prob. 28ECh. 16.1 - Prob. 29ECh. 16.1 - Prob. 30ECh. 16.1 - Prob. 31ECh. 16.1 - Prob. 32ECh. 16.1 - Prob. 33ECh. 16.1 - Prob. 34ECh. 16.1 - Prob. 35ECh. 16.1 - Prob. 36ECh. 16.1 - Prob. 37ECh. 16.1 - Prob. 38ECh. 16.1 - Prob. 39ECh. 16.1 - Prob. 40ECh. 16.1 - Prob. 41ECh. 16.1 - Prob. 42ECh. 16.1 - Prob. 43ECh. 16.1 - Prob. 44ECh. 16.2 - Prob. 1PECh. 16.2 - Prob. 2PECh. 16.2 - Prob. 3PECh. 16.2 - Prob. 1ECh. 16.2 - Prob. 2ECh. 16.2 - Prob. 3ECh. 16.2 - Prob. 4ECh. 16.2 - Prob. 5ECh. 16.2 - Prob. 6ECh. 16.2 - Prob. 7ECh. 16.2 - Prob. 8ECh. 16.2 - Prob. 9ECh. 16.2 - Prob. 10ECh. 16.2 - Prob. 11ECh. 16.2 - Prob. 12ECh. 16.2 - Prob. 13ECh. 16.2 - Prob. 14ECh. 16.2 - Prob. 15ECh. 16.2 - Prob. 16ECh. 16.2 - Prob. 17ECh. 16.2 - Prob. 18ECh. 16.2 - Prob. 19ECh. 16.2 - Prob. 20ECh. 16.2 - Prob. 21ECh. 16.2 - Prob. 22ECh. 16.2 - Prob. 23ECh. 16.2 - Prob. 24ECh. 16.2 - Prob. 25ECh. 16.2 - Prob. 26ECh. 16.2 - Prob. 27ECh. 16.2 - Prob. 28ECh. 16.2 - Prob. 29ECh. 16.2 - Prob. 30ECh. 16.2 - Prob. 31ECh. 16.2 - Prob. 32ECh. 16.2 - Prob. 33ECh. 16.2 - Prob. 34ECh. 16.2 - Prob. 35ECh. 16.2 - Prob. 36ECh. 16.2 - Prob. 37ECh. 16.2 - Prob. 38ECh. 16.2 - Prob. 39ECh. 16.2 - Prob. 40ECh. 16.2 - Prob. 41ECh. 16.2 - Prob. 42ECh. 16.2 - Prob. 43ECh. 16.2 - Prob. 44ECh. 16.2 - Prob. 45ECh. 16.2 - Prob. 46ECh. 16.2 - Prob. 47ECh. 16.2 - Prob. 48ECh. 16.3 - Prob. 1PECh. 16.3 - Prob. 2PECh. 16.3 - Prob. 1ECh. 16.3 - Prob. 2ECh. 16.3 - Prob. 3ECh. 16.3 - Prob. 4ECh. 16.3 - Prob. 5ECh. 16.3 - Prob. 6ECh. 16.3 - Prob. 7ECh. 16.3 - Prob. 8ECh. 16.3 - Prob. 9ECh. 16.3 - Prob. 10ECh. 16.3 - Prob. 11ECh. 16.3 - Prob. 12ECh. 16.3 - Prob. 13ECh. 16.3 - Prob. 14ECh. 16.3 - Prob. 15ECh. 16.3 - Prob. 16ECh. 16.3 - Prob. 17ECh. 16.3 - Prob. 18ECh. 16.3 - Prob. 19ECh. 16.3 - In Exercises 11–20, find the inverse of each of...Ch. 16.3 - In Exercises 21–28, find the inverse of each of...Ch. 16.3 - In Exercises 21–28, find the inverse of each of...Ch. 16.3 - Prob. 23ECh. 16.3 - Prob. 24ECh. 16.3 - Prob. 25ECh. 16.3 - Prob. 26ECh. 16.3 - Prob. 27ECh. 16.3 - Prob. 28ECh. 16.3 - Prob. 29ECh. 16.3 - Prob. 30ECh. 16.3 - Prob. 31ECh. 16.3 - Prob. 32ECh. 16.3 - Prob. 33ECh. 16.3 - Prob. 34ECh. 16.3 - Prob. 35ECh. 16.3 - Prob. 36ECh. 16.3 - Prob. 37ECh. 16.3 - Prob. 38ECh. 16.3 - Prob. 39ECh. 16.3 - Prob. 40ECh. 16.3 - Prob. 41ECh. 16.3 - In Exercises 35–44, solve the given problems.
42....Ch. 16.3 - Prob. 43ECh. 16.3 - Prob. 44ECh. 16.4 - Prob. 1PECh. 16.4 - Prob. 1ECh. 16.4 - Prob. 2ECh. 16.4 - Prob. 3ECh. 16.4 - Prob. 4ECh. 16.4 - Prob. 5ECh. 16.4 - Prob. 6ECh. 16.4 - Prob. 7ECh. 16.4 - Prob. 8ECh. 16.4 - Prob. 9ECh. 16.4 - Prob. 10ECh. 16.4 - Prob. 11ECh. 16.4 - Prob. 12ECh. 16.4 - Prob. 13ECh. 16.4 - Prob. 14ECh. 16.4 - Prob. 15ECh. 16.4 - Prob. 16ECh. 16.4 - Prob. 17ECh. 16.4 - Prob. 18ECh. 16.4 - Prob. 19ECh. 16.4 - Prob. 20ECh. 16.4 - Prob. 21ECh. 16.4 - Prob. 22ECh. 16.4 - Prob. 23ECh. 16.4 - Prob. 24ECh. 16.4 - Prob. 25ECh. 16.4 - Prob. 26ECh. 16.4 - Prob. 27ECh. 16.4 - Prob. 28ECh. 16.4 - Prob. 29ECh. 16.4 - Prob. 30ECh. 16.4 - In Exercises 29–40, solve the indicated systems of...Ch. 16.4 - Prob. 32ECh. 16.4 - Prob. 33ECh. 16.4 - Prob. 34ECh. 16.4 - Prob. 35ECh. 16.4 - Prob. 36ECh. 16.4 - Prob. 37ECh. 16.4 - Prob. 38ECh. 16.4 - Prob. 39ECh. 16.4 - Prob. 40ECh. 16.5 - Prob. 1PECh. 16.5 - Prob. 1ECh. 16.5 - Prob. 2ECh. 16.5 - Prob. 3ECh. 16.5 - Prob. 4ECh. 16.5 - Prob. 5ECh. 16.5 - Prob. 6ECh. 16.5 - Prob. 7ECh. 16.5 - Prob. 8ECh. 16.5 - Prob. 9ECh. 16.5 - Prob. 10ECh. 16.5 - Prob. 11ECh. 16.5 - Prob. 12ECh. 16.5 - Prob. 13ECh. 16.5 - Prob. 14ECh. 16.5 - Prob. 15ECh. 16.5 - Prob. 16ECh. 16.5 - Prob. 17ECh. 16.5 - Prob. 18ECh. 16.5 - Prob. 19ECh. 16.5 - Prob. 20ECh. 16.5 - Prob. 21ECh. 16.5 - Prob. 22ECh. 16.5 - Prob. 23ECh. 16.5 - Prob. 24ECh. 16.5 - Prob. 25ECh. 16.5 - Prob. 26ECh. 16.5 - Prob. 27ECh. 16.5 - Prob. 28ECh. 16.5 - Prob. 29ECh. 16.5 - Prob. 30ECh. 16.5 - Prob. 31ECh. 16.5 - Prob. 32ECh. 16.5 - Prob. 33ECh. 16.5 - Prob. 34ECh. 16.6 - Prob. 1PECh. 16.6 - Prob. 1ECh. 16.6 - Prob. 2ECh. 16.6 - Prob. 3ECh. 16.6 - In Exercises 3–6, evaluate each determinant by...Ch. 16.6 - Prob. 5ECh. 16.6 - In Exercises 3–6, evaluate each determinant by...Ch. 16.6 - Prob. 7ECh. 16.6 - Prob. 8ECh. 16.6 - Prob. 9ECh. 16.6 - Prob. 10ECh. 16.6 - Prob. 11ECh. 16.6 - Prob. 12ECh. 16.6 - Prob. 13ECh. 16.6 - Prob. 14ECh. 16.6 - Prob. 15ECh. 16.6 - Prob. 16ECh. 16.6 - Prob. 17ECh. 16.6 - Prob. 18ECh. 16.6 - Prob. 19ECh. 16.6 - Prob. 20ECh. 16.6 - Prob. 21ECh. 16.6 - Prob. 22ECh. 16.6 - Prob. 23ECh. 16.6 - Prob. 24ECh. 16.6 - Prob. 25ECh. 16.6 - Prob. 26ECh. 16.6 - Prob. 27ECh. 16.6 - Prob. 28ECh. 16.6 - Prob. 29ECh. 16.6 - Prob. 30ECh. 16.6 - Prob. 31ECh. 16.6 - Prob. 32ECh. 16.6 - Prob. 33ECh. 16.6 - Prob. 34ECh. 16.6 - Prob. 35ECh. 16.6 - Prob. 36ECh. 16.6 - Prob. 37ECh. 16.6 - Prob. 38ECh. 16 - Prob. 1RECh. 16 - Prob. 2RECh. 16 - Prob. 3RECh. 16 - Prob. 4RECh. 16 - Prob. 5RECh. 16 - Prob. 6RECh. 16 - Prob. 7RECh. 16 - Prob. 8RECh. 16 - Prob. 9RECh. 16 - Prob. 10RECh. 16 - Prob. 11RECh. 16 - Prob. 12RECh. 16 - Prob. 13RECh. 16 - Prob. 14RECh. 16 - Prob. 15RECh. 16 - Prob. 16RECh. 16 - Prob. 17RECh. 16 - Prob. 18RECh. 16 - Prob. 19RECh. 16 - Prob. 20RECh. 16 - Prob. 21RECh. 16 - Prob. 22RECh. 16 - Prob. 23RECh. 16 - Prob. 24RECh. 16 - Prob. 25RECh. 16 - Prob. 26RECh. 16 - Prob. 27RECh. 16 - Prob. 28RECh. 16 - Prob. 29RECh. 16 - Prob. 30RECh. 16 - Prob. 31RECh. 16 - Prob. 32RECh. 16 - Prob. 33RECh. 16 - Prob. 34RECh. 16 - Prob. 35RECh. 16 - Prob. 36RECh. 16 - Prob. 37RECh. 16 - Prob. 38RECh. 16 - Prob. 39RECh. 16 - Prob. 40RECh. 16 - Prob. 41RECh. 16 - Prob. 42RECh. 16 - Prob. 43RECh. 16 - Prob. 44RECh. 16 - Prob. 45RECh. 16 - Prob. 46RECh. 16 - Prob. 47RECh. 16 - Prob. 48RECh. 16 - Prob. 49RECh. 16 - Prob. 50RECh. 16 - Prob. 51RECh. 16 - Prob. 52RECh. 16 - Prob. 53RECh. 16 - Prob. 54RECh. 16 - Prob. 55RECh. 16 - Prob. 56RECh. 16 - Prob. 57RECh. 16 - Prob. 58RECh. 16 - Prob. 59RECh. 16 - Prob. 60RECh. 16 - Prob. 61RECh. 16 - Prob. 62RECh. 16 - Prob. 63RECh. 16 - Prob. 64RECh. 16 - Prob. 65RECh. 16 - Prob. 66RECh. 16 - Prob. 67RECh. 16 - In Exercises 67–70, use the determinants for...Ch. 16 - Prob. 69RECh. 16 - Prob. 70RECh. 16 - Prob. 71RECh. 16 - Prob. 72RECh. 16 - Prob. 73RECh. 16 - Prob. 74RECh. 16 - Prob. 75RECh. 16 - In Exercises 73–76, solve the given...Ch. 16 - Prob. 77RECh. 16 - Prob. 78RECh. 16 - Prob. 79RECh. 16 - Prob. 80RECh. 16 - Prob. 81RECh. 16 - Prob. 82RECh. 16 - Prob. 83RECh. 16 - Prob. 84RECh. 16 - Prob. 85RECh. 16 - Prob. 86RECh. 16 - Prob. 87RECh. 16 - Prob. 88RECh. 16 - Prob. 89RECh. 16 - Prob. 90RECh. 16 - Prob. 91RECh. 16 - Prob. 92RECh. 16 - Prob. 93RECh. 16 - Prob. 94RECh. 16 - Prob. 95RECh. 16 - Prob. 96RECh. 16 - Prob. 97RECh. 16 - Prob. 1PTCh. 16 - Prob. 2PTCh. 16 - Prob. 3PTCh. 16 - Prob. 4PTCh. 16 - Prob. 5PTCh. 16 - Prob. 6PTCh. 16 - Prob. 7PTCh. 16 - Prob. 8PTCh. 16 - Prob. 9PTCh. 16 - Prob. 10PT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 6. Sketch the trace of the following curve on R², п 3п (t) = (t2 sin(t), t2 cos(t)), tЄ 22 [3 Marks] Find the length of this curve. [7 Marks]arrow_forwardTotal marks 10 Total marks on naner: 80 7. Let DCR2 be a bounded domain with the boundary OD which can be represented as a smooth closed curve : [a, b] R2, oriented in the anticlock- wise direction. Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = ½ (−y, x) · dy. [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse y(t) = (10 cos(t), 5 sin(t)), t = [0,2π]. [5 Marks]arrow_forwardTotal marks 15 Total marks on paper: 80 6. Let DCR2 be a bounded domain with the boundary ǝD which can be represented as a smooth closed curve : [a, b] → R², oriented in the anticlockwise direction. (i) Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = . [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse (t) = (5 cos(t), 10 sin(t)), t = [0,2π]. [5 Marks] (iii) Explain in your own words why Green's Theorem can not be applied to the vector field У x F(x,y) = ( - x² + y²²x² + y² ). [5 Marks]arrow_forward
- Total marks 15 པ་ (i) Sketch the trace of the following curve on R2, (t) = (t2 cos(t), t² sin(t)), t = [0,2π]. [3 Marks] (ii) Find the length of this curve. (iii) [7 Marks] Give a parametric representation of a curve : [0, that has initial point (1,0), final point (0, 1) and the length √2. → R² [5 Marks] Turn over. MA-201: Page 4 of 5arrow_forwardTotal marks 15 5. (i) Let f R2 R be defined by f(x1, x2) = x² - 4x1x2 + 2x3. Find all local minima of f on R². (ii) [10 Marks] Give an example of a function f: R2 R which is not bounded above and has exactly one critical point, which is a minimum. Justify briefly your answer. [5 Marks] 6. (i) Sketch the trace of the following curve on R2, y(t) = (sin(t), 3 sin(t)), t = [0,π]. [3 Marks]arrow_forwardIn rhombus ABCD, diagonals BD¯¯¯¯¯¯BD¯ and AC¯¯¯¯¯AC¯ intersect at point E. If BE = 4n – 3 and EC = 2n + 5, which expression can be used to represent AD?arrow_forward
- No chatgpt pls will upvotearrow_forwardLet 2 A = 4 3 -4 0 1 (a) Show that v = eigenvalue. () is an eigenvector of A and find the corresponding (b) Find the characteristic polynomial of A and factorise it. Hint: the answer to (a) may be useful. (c) Determine all eigenvalues of A and find bases for the corresponding eigenspaces. (d) Find an invertible matrix P and a diagonal matrix D such that P-¹AP = D.arrow_forward(c) Let 6 0 0 A = -10 4 8 5 1 2 (i) Find the characteristic polynomial of A and factorise it. (ii) Determine all eigenvalues of A and find bases for the corresponding eigenspaces. (iii) Is A diagonalisable? Give reasons for your answer.arrow_forward
- Drapers' Bank offers loans and deposits with interest rate 5% compounded monthly. (a) If you deposit £5,000 in a Drapers' Bank account, how much money will be in your account 4 years from now? Enter your answer correct to the nearest pound. Answer: (b) What is the effective interest rate of a Drapers' Bank account? Enter your answer as a percentage correct to 3 significant digits. Answer: (c) Drapers' Bank gives you a loan of £60,000 to start a new company under the condition that you pay back the loan in monthly instalments of EC to be paid at the end of each month over the next 5 years, starting at the end of this month. Determine the value of C and enter it correct to the nearest pound. Answer:arrow_forwardmost 2, and let Let P2 denote the vector space of polynomials of degree at D: P2➡ P2 be the transformation that sends a polynomial p(t) = at² + bt+c in P2 to its derivative p'(t) 2at+b, that is, D(p) = p'. (a) Prove that D is a linear transformation. (b) Find a basis for the kernel ker(D) of the linear transformation D and compute its nullity. (c) Find a basis for the image im(D) of the linear transformation D and compute its rank. (d) Verify that the Rank-Nullity Theorem holds for the linear transformation D. (e) Find the matrix representation of D in the standard basis (1,t, t2) of P2.arrow_forwardThe Mason group has a liability of £200,000 to be paid in 14 years' time. It wants to Redington immunise these liabilities with assets consisting of amount P in a bank and Q 18-year zero coupon bonds, with P and Q to be determined. Interest is compounded monthly at rate 8%. (a) Answer: What is the present value of the liability? Enter your answer correct to the nearest pound. (b) What is the duration of the liability? Enter your answer correct to 3 significant digits. Answer: (c) What is the convexity of the liability? Enter your answer correct to 3 significant digits. Answer: (d) Write down the two equations that P and Q need to satisfy for Redington immunisation to hold and solve these equations for P and Q. Enter the answers correct to the nearest pound. Answers: P= Q= (e) What is the convexity of the assets in this case? Enter your answer correct to 3 significant digits. Answer: (f) Is the convexity condition that is necessary for Redington immunisation satisfied in this case?…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Matrix Factorization - Numberphile; Author: Numberphile;https://www.youtube.com/watch?v=wTUSz-HSaBg;License: Standard YouTube License, CC-BY