
Introductory Statistics (10th Edition)
10th Edition
ISBN: 9780321989178
Author: Neil A. Weiss
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 16.5, Problem 161E
(a)
To determine
Find whether conducting Kruskal-Wallis test is reasonable or not.
(b)
To determine
Test whether the data provide sufficient evidence to conclude that a difference exists among the means of the population by using Kruskal-Wallis test.
(c)
To determine
Interpret the result.
(d)
To determine
Compare the results with the one-way ANOVA.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Business Discuss
Could you please answer this question using excel. For 1a) I got 84.75 and for part 1b) I got 85.33 and was wondering if you could check if my answers were correct. Thanks
What is one sample T-test? Give an example of business application of this test?
What is Two-Sample T-Test. Give an example of business application of this test?
.What is paired T-test. Give an example of business application of this test?
What is one way ANOVA test. Give an example of business application of this test?
1. One Sample T-Test: Determine whether the average satisfaction rating of customers for a product is significantly different from a hypothetical mean of 75.
(Hints: The null can be about maintaining status-quo or no difference; If your alternative hypothesis is non-directional (e.g., μ≠75), you should use the two-tailed p-value from excel file to make a decision about rejecting or not rejecting null. If alternative is directional (e.g., μ < 75), you should use the lower-tailed p-value. For alternative hypothesis μ > 75, you should use the upper-tailed p-value.)
H0 =
H1=
Conclusion: The p value from one sample t-test is _______. Since the two-tailed p-value…
Chapter 16 Solutions
Introductory Statistics (10th Edition)
Ch. 16.1 - How do we identify an F-distribution and its...Ch. 16.1 - How many degrees of freedom does an F-curve have?...Ch. 16.1 - What symbol is used to denote the F-value having...Ch. 16.1 - Using the F-notation, identify the F-value having...Ch. 16.1 - An F-curve has df = (12, 7). What is the number of...Ch. 16.1 - An F-curve has df = (8, 19). What is the number of...Ch. 16.1 - In Exercises 16.716.10, use Table VIII in Appendix...Ch. 16.1 - Prob. 8ECh. 16.1 - Prob. 9ECh. 16.1 - Prob. 10E
Ch. 16.2 - One-way ANOVA is a procedure for comparing the...Ch. 16.2 - If we define s=MSE, of which parameter is s an...Ch. 16.2 - Explain the reason for the word variance in the...Ch. 16.2 - For a one-way ANOVA test, suppose that, in...Ch. 16.2 - Regarding one-way ANOVA, fill in the blanks in...Ch. 16.2 - Regarding one-way ANOVA, fill in the blanks in...Ch. 16.2 - Regarding one-way ANOVA, fill in the blanks in...Ch. 16.2 - Explain the logic behind one-way ANOVA.Ch. 16.2 - What does the term one-way signify in the phrase...Ch. 16.2 - Figure 16.6 shows side-by-side boxplots of...Ch. 16.2 - Figure 16.7 shows side-by-side boxplots of...Ch. 16.2 - Discuss two methods for checking the assumptions...Ch. 16.2 - In one-way ANOVA, what is the residual of an...Ch. 16.2 - In Exercises 16.24-16.29, we have provided data...Ch. 16.2 - In Exercises 16.24-16.29. we have provided data...Ch. 16.2 - In Exercises 16.24-16.29, we have provided data...Ch. 16.2 - In Exercises 16.24-16.29, we have provided data...Ch. 16.2 - In Exercises 16.24-16.29, we have provided data...Ch. 16.2 - In Exercises 16.24-16.29, we have provided data...Ch. 16.2 - Show that, for two populations, MSE=sp2, where is...Ch. 16.2 - Suppose that the variable under consideration is...Ch. 16.3 - Suppose that a one-way ANOVA is being performed to...Ch. 16.3 - We stated earlier that a one-way ANOVA test is...Ch. 16.3 - Following are the notations for the three sums of...Ch. 16.3 - State the one-way ANOVA identity, and interpret...Ch. 16.3 - True or false: If you know any two of the three...Ch. 16.3 - In each part, specify what type of analysis you...Ch. 16.3 - Prob. 38ECh. 16.3 - In Exercises 16.38-16.41, fill in the missing...Ch. 16.3 - In Exercises 16.38-16.41 fill in the missing...Ch. 16.3 - Prob. 41ECh. 16.3 - In Exercises 16.42-16.47. wt provide data from...Ch. 16.3 - In Exercises 16.42-16.47, we provide data from...Ch. 16.3 - Prob. 44ECh. 16.3 - Prob. 45ECh. 16.3 - Prob. 46ECh. 16.3 - Prob. 47ECh. 16.3 - Prob. 48ECh. 16.3 - Copepod Cuisine. Copepods are tiny crustaceans...Ch. 16.3 - In Exercises 16.48-16.53, apply Procedure 16.1 on...Ch. 16.3 - Staph Infections. In the article Using EDE, ANOVA...Ch. 16.3 - Prob. 52ECh. 16.3 - Prob. 53ECh. 16.3 - Prob. 54ECh. 16.3 - Prob. 55ECh. 16.3 - In Exercises 16.54-16.59, use the technology of...Ch. 16.3 - Prob. 57ECh. 16.3 - In Exercises 16.54-16.59, use. the technology of...Ch. 16.3 - Prob. 59ECh. 16.3 - Prob. 60ECh. 16.3 - Prob. 61ECh. 16.3 - In Exercises 16.60-16.63, refer to the discussion...Ch. 16.3 - Starting Salaries. The National Association of...Ch. 16.3 - Working with Large Data Sets In Exercises...Ch. 16.3 - Working with Large Data Sets In Exercises...Ch. 16.3 - In Exercises 16.64-16.72, use the technology of...Ch. 16.3 - In Exercises 16.6416.72, use the technology of...Ch. 16.3 - In Exercises 16.64-16.72, use the technology of...Ch. 16.3 - In Exercises 16.64-16.72, use the technology of...Ch. 16.3 - Prob. 70ECh. 16.3 - Prob. 71ECh. 16.3 - Prob. 72ECh. 16.3 - Prob. 73ECh. 16.3 - Prob. 74ECh. 16.3 - Prob. 75ECh. 16.4 - What is the purpose of doing a multiple...Ch. 16.4 - Fill in the blank: If a confidence interval for...Ch. 16.4 - Explain the difference between the family...Ch. 16.4 - Regarding family and individual confidence levels,...Ch. 16.4 - What is the name of the distribution on which the...Ch. 16.4 - The parameter v for the q-curve in a Tukey...Ch. 16.4 - Explain the essential difference between obtaining...Ch. 16.4 - Determine the following for a q-curve with...Ch. 16.4 - Determine the following for a q-curve with...Ch. 16.4 - Find the following for a q-curve with parameters K...Ch. 16.4 - Find the following for a q-curve with parameters K...Ch. 16.4 - Suppose that you conduct a one-way ANOVA test and...Ch. 16.4 - In Exercises 16.88-16.93, we repeal the data from...Ch. 16.4 - In Exercises 16.88-16.93, we repeat the data from...Ch. 16.4 - In Exercises 16.88-16.93, we repeat the data from...Ch. 16.4 - In Exercises 16.88-16.93, we repeat the data from...Ch. 16.4 - In Exercises 16.88-16.93, we repeat the data from...Ch. 16.4 - Prob. 93ECh. 16.4 - Prob. 94ECh. 16.4 - In Exercises 16.94-16.99, use Procedure 16.2 on...Ch. 16.4 - In Exercises 16.94-16.99, use Procedure 16.2 on...Ch. 16.4 - In Exercises 16.94-16.99, use Procedure 16.2 on...Ch. 16.4 - Prob. 98ECh. 16.4 - Prob. 99ECh. 16.4 - Prob. 100ECh. 16.4 - Prob. 101ECh. 16.4 - In Exercises 16.100-16.105, use the technology of...Ch. 16.4 - Prob. 103ECh. 16.4 - Prob. 104ECh. 16.4 - Prob. 105ECh. 16.4 - In Exercises 16.106-16.109, use Procedure 10.2 on...Ch. 16.4 - Prob. 107ECh. 16.4 - Prob. 108ECh. 16.4 - Prob. 109ECh. 16.4 - Prob. 110ECh. 16.4 - In Exercises 16.110-16.118, we repeat information...Ch. 16.4 - Prob. 112ECh. 16.4 - Prob. 113ECh. 16.4 - Prob. 114ECh. 16.4 - In Exercises 16.110-16.118, we repeat information...Ch. 16.4 - Prob. 116ECh. 16.4 - Prob. 117ECh. 16.4 - In Exercises 16.110-16.16.118, we repeat...Ch. 16.4 - Explain why the family confidence level, not the...Ch. 16.4 - Prob. 120ECh. 16.4 - Energy Consumption. Apply Table 16.11 on page 723...Ch. 16.5 - Prob. 122ECh. 16.5 - Prob. 123ECh. 16.5 - Prob. 124ECh. 16.5 - Prob. 125ECh. 16.5 - Prob. 126ECh. 16.5 - The measure of total variation of all the ranks is...Ch. 16.5 - Regarding a Kruskal-Wallis test, fill in the...Ch. 16.5 - Prob. 129ECh. 16.5 - Prob. 130ECh. 16.5 - In each of Exercises 16.130-16.133, suppose that...Ch. 16.5 - Prob. 132ECh. 16.5 - Prob. 133ECh. 16.5 - Prob. 134ECh. 16.5 - Prob. 135ECh. 16.5 - Prob. 136ECh. 16.5 - Prob. 137ECh. 16.5 - Prob. 138ECh. 16.5 - Prob. 139ECh. 16.5 - Prob. 140ECh. 16.5 - Prob. 141ECh. 16.5 - Prob. 142ECh. 16.5 - Prob. 143ECh. 16.5 - Prob. 144ECh. 16.5 - In Exercises 16.144-16.149, perform a...Ch. 16.5 - In Exercises 16.144-16.149, perform a...Ch. 16.5 - In Exercises 16.144-16.149, perform a...Ch. 16.5 - Prob. 148ECh. 16.5 - Prob. 149ECh. 16.5 - Prob. 150ECh. 16.5 - Prob. 151ECh. 16.5 - Prob. 152ECh. 16.5 - Prob. 153ECh. 16.5 - Prob. 154ECh. 16.5 - Prob. 155ECh. 16.5 - Prob. 156ECh. 16.5 - Prob. 157ECh. 16.5 - Prob. 158ECh. 16.5 - Prob. 159ECh. 16.5 - Prob. 160ECh. 16.5 - Prob. 161ECh. 16.5 - Prob. 162ECh. 16.5 - Prob. 163ECh. 16.5 - Prob. 164ECh. 16.5 - Prob. 165ECh. 16.5 - Prob. 166ECh. 16.5 - Prob. 167ECh. 16 - For what is one-way ANOVA used?Ch. 16 - State the four assumptions for one-way ANOVA, and...Ch. 16 - On what distribution does one-way ANOVA rely?Ch. 16 - Suppose that you want to compare the means of...Ch. 16 - Prob. 5RPCh. 16 - In one-way ANOVA, a. list and interpret the three...Ch. 16 - Prob. 7RPCh. 16 - Prob. 8RPCh. 16 - Prob. 9RPCh. 16 - Prob. 10RPCh. 16 - Prob. 11RPCh. 16 - Suppose that you want to compare the means of...Ch. 16 - Prob. 13RPCh. 16 - Prob. 14RPCh. 16 - Prob. 15RPCh. 16 - Prob. 16RPCh. 16 - In Problems 17-21, consider an F-curve with df =...Ch. 16 - Prob. 18RPCh. 16 - Prob. 19RPCh. 16 - Prob. 20RPCh. 16 - Prob. 21RPCh. 16 - Consider a q -curve with parameters 3 and 14. a....Ch. 16 - Consider the following hypothetical samples. A B C...Ch. 16 - Losses to Robbery. The Federal Bureau of...Ch. 16 - Prob. 25RPCh. 16 - Prob. 26RPCh. 16 - Prob. 27RPCh. 16 - Losses to Robbery. Refer to Problem 24. a. At the...Ch. 16 - Foot-pressure Angle. Genu valgum, commonly known...Ch. 16 - Prob. 30RPCh. 16 - Prob. 31RPCh. 16 - Prob. 32RPCh. 16 - In Problems 3234, use the technology of your...Ch. 16 - Prob. 34RPCh. 16 - Prob. 35RPCh. 16 - In Problems 3537, refer to the specified problem...Ch. 16 - Prob. 37RPCh. 16 - Recall from Chapter 1 (see page 34) that the Focus...Ch. 16 - SELF-PERCEPTION AND PHYSICAL ACTIVITY As you...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Using the accompanying Accounting Professionals data to answer the following questions. a. Find and interpret a 90% confidence interval for the mean years of service. b. Find and interpret a 90% confidence interval for the proportion of employees who have a graduate degree. view the Accounting Professionals data. Employee Years of Service Graduate Degree?1 26 Y2 8 N3 10 N4 6 N5 23 N6 5 N7 8 Y8 5 N9 26 N10 14 Y11 10 N12 8 Y13 7 Y14 27 N15 16 Y16 17 N17 21 N18 9 Y19 9 N20 9 N Question content area bottom Part 1 a. A 90% confidence interval for the mean years of service is (Use ascending order. Round to two decimal places as needed.)arrow_forwardIf, based on a sample size of 900,a political candidate finds that 509people would vote for him in a two-person race, what is the 95%confidence interval for his expected proportion of the vote? Would he be confident of winning based on this poll? Question content area bottom Part 1 A 9595% confidence interval for his expected proportion of the vote is (Use ascending order. Round to four decimal places as needed.)arrow_forwardQuestions An insurance company's cumulative incurred claims for the last 5 accident years are given in the following table: Development Year Accident Year 0 2018 1 2 3 4 245 267 274 289 292 2019 255 276 288 294 2020 265 283 292 2021 263 278 2022 271 It can be assumed that claims are fully run off after 4 years. The premiums received for each year are: Accident Year Premium 2018 306 2019 312 2020 318 2021 326 2022 330 You do not need to make any allowance for inflation. 1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method. (b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method. 2. Comment on the differences in the reserves produced by the methods in Part 1.arrow_forward
- A population that is uniformly distributed between a=0and b=10 is given in sample sizes 50( ), 100( ), 250( ), and 500( ). Find the sample mean and the sample standard deviations for the given data. Compare your results to the average of means for a sample of size 10, and use the empirical rules to analyze the sampling error. For each sample, also find the standard error of the mean using formula given below. Standard Error of the Mean =sigma/Root Complete the following table with the results from the sampling experiment. (Round to four decimal places as needed.) Sample Size Average of 8 Sample Means Standard Deviation of 8 Sample Means Standard Error 50 100 250 500arrow_forwardA survey of 250250 young professionals found that two dash thirdstwo-thirds of them use their cell phones primarily for e-mail. Can you conclude statistically that the population proportion who use cell phones primarily for e-mail is less than 0.720.72? Use a 95% confidence interval. Question content area bottom Part 1 The 95% confidence interval is left bracket nothing comma nothing right bracket0.60820.6082, 0.72510.7251. As 0.720.72 is within the limits of the confidence interval, we cannot conclude that the population proportion is less than 0.720.72. (Use ascending order. Round to four decimal places as needed.)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward
- A survey of 250 young professionals found that two-thirds of them use their cell phones primarily for e-mail. Can you conclude statistically that the population proportion who use cell phones primarily for e-mail is less than 0.72? Use a 95% confidence interval. Question content area bottom Part 1 The 95% confidence interval is [ ], [ ] As 0.72 is ▼ above the upper limit within the limits below the lower limit of the confidence interval, we ▼ can cannot conclude that the population proportion is less than 0.72. (Use ascending order. Round to four decimal places as needed.)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward
- I need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forwardQuestions An insurance company's cumulative incurred claims for the last 5 accident years are given in the following table: Development Year Accident Year 0 2018 1 2 3 4 245 267 274 289 292 2019 255 276 288 294 2020 265 283 292 2021 263 278 2022 271 It can be assumed that claims are fully run off after 4 years. The premiums received for each year are: Accident Year Premium 2018 306 2019 312 2020 318 2021 326 2022 330 You do not need to make any allowance for inflation. 1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method. (b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method. 2. Comment on the differences in the reserves produced by the methods in Part 1.arrow_forwardQuestions An insurance company's cumulative incurred claims for the last 5 accident years are given in the following table: Development Year Accident Year 0 2018 1 2 3 4 245 267 274 289 292 2019 255 276 288 294 2020 265 283 292 2021 263 278 2022 271 It can be assumed that claims are fully run off after 4 years. The premiums received for each year are: Accident Year Premium 2018 306 2019 312 2020 318 2021 326 2022 330 You do not need to make any allowance for inflation. 1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method. (b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method. 2. Comment on the differences in the reserves produced by the methods in Part 1.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Hypothesis Testing using Confidence Interval Approach; Author: BUM2413 Applied Statistics UMP;https://www.youtube.com/watch?v=Hq1l3e9pLyY;License: Standard YouTube License, CC-BY
Hypothesis Testing - Difference of Two Means - Student's -Distribution & Normal Distribution; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=UcZwyzwWU7o;License: Standard Youtube License