Improper integrals Improper integrals arise in polar coordinates when the radial coordinate r becomes arbitrarily large. Under certain conditions, these integrals are treated in the usual way: ∫ α β ∫ a ∞ f ( r , θ ) r d r d θ = lim b → ∞ ∫ α β ∫ a b f ( r , θ ) r d r d θ . Use this technique to evaluate the following integrals. 64. ∬ R d A ( x 2 + y 2 ) 5 / 2 ; R = { ( r , θ ) : 1 ≤ r < ∞ , 0 ≤ θ ≤ 2 π }
Improper integrals Improper integrals arise in polar coordinates when the radial coordinate r becomes arbitrarily large. Under certain conditions, these integrals are treated in the usual way: ∫ α β ∫ a ∞ f ( r , θ ) r d r d θ = lim b → ∞ ∫ α β ∫ a b f ( r , θ ) r d r d θ . Use this technique to evaluate the following integrals. 64. ∬ R d A ( x 2 + y 2 ) 5 / 2 ; R = { ( r , θ ) : 1 ≤ r < ∞ , 0 ≤ θ ≤ 2 π }
Solution Summary: The author evaluates the value of the given integral, which is 2pi3.
Improper integralsImproper integrals arise in polar coordinates when the radial coordinate r becomes arbitrarily large. Under certain conditions, these integrals are treated in the usual way:
∫
α
β
∫
a
∞
f
(
r
,
θ
)
r
d
r
d
θ
=
lim
b
→
∞
∫
α
β
∫
a
b
f
(
r
,
θ
)
r
d
r
d
θ
.
Use this technique to evaluate the following integrals.
64.
∬
R
d
A
(
x
2
+
y
2
)
5
/
2
;
R
=
{
(
r
,
θ
)
:
1
≤
r
<
∞
,
0
≤
θ
≤
2
π
}
With differentiation, one of the major concepts of calculus. Integration involves the calculation of an integral, which is useful to find many quantities such as areas, volumes, and displacement.
Use the information to find and compare Δy and dy. (Round your answers to four decimal places.)
y = x4 + 7 x = −3 Δx = dx = 0.01
Δy =
dy =
4. A car travels in a straight line for one hour. Its velocity, v, in miles per hour at six minute intervals is shown
in the table. For each problem, approximate the distance the car traveled (in miles) using the given method,
on the provided interval, and with the given number of rectangles or trapezoids, n.
Time (min) 0 6 12 18|24|30|36|42|48|54|60
Speed (mph) 0 10 20 40 60 50 40 30 40 40 65
a.) Left Rectangles, [0, 30] n=5
b.) Right Rectangles, [24, 42] n=3
c.) Midpoint Rectangles, [24, 60] n=3
d.) Trapezoids, [0, 24] n=4
The bracket BCD is hinged at C and attached to a control cable at B. Let F₁ = 275 N and F2 = 275 N.
F1
B
a=0.18 m
C
A
0.4 m
-0.4 m-
0.24 m
Determine the reaction at C.
The reaction at C
N Z
F2
D
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY