University Physics with Modern Physics, Volume 1 (Chs. 1-20) and Mastering Physics with Pearson eText & ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134209586
Author: Hugh D. Young
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16.3, Problem 16.3TYU
To determine
What effect if intensity of the sound wave doubled on quantities displacement amplitude, pressure amplitude bulk modulus, sound speed and sound intensity level.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You double the intensity of a sound wave in air while leaving the frequency unchanged. (The pressure, density, and temperature of the air remain unchanged as well.) What effect does this have on the displacement amplitude, pressure amplitude, bulk modulus, sound speed, and sound intensity level?
Suppose fluid B has 4.6 times the bulk modulus
and 1.2 times the density of fluid A. Find the ratio
of the speed of sound in fluid B over the speed of
sound in fluid A.
A particular jet liner has a cabin noise level of 10^-4.96 W/m. What is this intensity in decibels? [Caution. The noise level value is not in scientific notation. Scientific notation does not accept non-whole number exponents. That is, handle it in exponent format instead of scientific notation.
Chapter 16 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) and Mastering Physics with Pearson eText & ValuePack Access Card (14th Edition)
Ch. 16.1 - You use an electronic signal generator to produce...Ch. 16.2 - Mercury is 13.6 times denser than water. Based on...Ch. 16.3 - Prob. 16.3TYUCh. 16.4 - If you connect a hose to one end of a metal pipe...Ch. 16.5 - A stopped organ pipe of length L has a fundamental...Ch. 16.6 - Suppose that speaker A in Fig. 16.23 emits a...Ch. 16.7 - One tuning fork vibrates at 440 Hz, while a second...Ch. 16.8 - You are at an outdoor concert with a wind blowing...Ch. 16.9 - What would you hear if you were directly behind...Ch. 16 - Prob. 16.1DQ
Ch. 16 - The hero of a western movie listens for an...Ch. 16 - Would you expect the pitch (or frequency) of an...Ch. 16 - In most modern wind instruments the pitch is...Ch. 16 - Symphonic musicians always warm up their wind...Ch. 16 - In a popular and amusing science demonstration, a...Ch. 16 - Prob. 16.7DQCh. 16 - (a) Does a sound level of 0 dB mean that there is...Ch. 16 - Which has a more direct influence on the loudness...Ch. 16 - If the pressure amplitude of a sound wave is...Ch. 16 - Does the sound intensity level obey the...Ch. 16 - A small fraction of the energy in a sound wave is...Ch. 16 - A small metal band is slipped onto one of the...Ch. 16 - An organist in a cathedral plays a loud chord and...Ch. 16 - Prob. 16.15DQCh. 16 - Two vibrating tuning forks have identical...Ch. 16 - A large church has part of the organ in the front...Ch. 16 - A sound source and a listener are both at rest on...Ch. 16 - Can you think of circumstances in which a Doppler...Ch. 16 - Prob. 16.20DQCh. 16 - If you wait at a railroad crossing as a train...Ch. 16 - In case 1, a source of sound approaches a...Ch. 16 - Does an aircraft make a sonic boom only at the...Ch. 16 - If you are riding in a supersonic aircraft, what...Ch. 16 - Prob. 16.25DQCh. 16 - Example 16.1 (Section 16.1) showed that for sound...Ch. 16 - Prob. 16.2ECh. 16 - Consider a sound wave in air that has displacement...Ch. 16 - A loud factory machine produces sound having a...Ch. 16 - BIO Ultrasound and Infrasound. (a) Whale...Ch. 16 - (a) In a liquid with density 1300 kg/m3,...Ch. 16 - A submerged scuba diver hears the sound of a boat...Ch. 16 - Prob. 16.8ECh. 16 - An oscillator vibrating at 1250 Hz produces a...Ch. 16 - CALC (a) Show that the fractional change in the...Ch. 16 - A 60.0-m-long brass rod is struck at one end. A...Ch. 16 - Prob. 16.12ECh. 16 - BIO Energy Delivered to the Ear. Sound is detected...Ch. 16 - (a) By what factor must the sound intensity be...Ch. 16 - Eavesdropping! You are trying to overhear a juicy...Ch. 16 - BIO Human Hearing. A fan at a rock concert is 30 m...Ch. 16 - A sound wave in air at 20C has a frequency of 320...Ch. 16 - You live on a busy street, but as a music lover,...Ch. 16 - BIO For a person with normal hearing, the faintest...Ch. 16 - The intensity due to a number of independent sound...Ch. 16 - CP A babys mouth is 30 cm from her fathers ear and...Ch. 16 - The Sacramento City Council adopted a law to...Ch. 16 - CP At point A, 3.0 m from a small source of sound...Ch. 16 - (a) If two sounds differ by 5.00 dB, find the...Ch. 16 - Standing sound waves are produced in a pipe that...Ch. 16 - The fundamental frequency of a pipe that is open...Ch. 16 - Prob. 16.27ECh. 16 - BIO The Vocal Tract. Many opera singers (and some...Ch. 16 - The longest pipe found in most medium-size pipe...Ch. 16 - Singing in the Shower. A pipe closed at both ends...Ch. 16 - You blow across the open mouth of an empty test...Ch. 16 - Prob. 16.32ECh. 16 - A 75.0-cm-long wire of mass 5.625 g is tied at...Ch. 16 - Small speakers A and B are driven in phase at 725...Ch. 16 - Prob. 16.35ECh. 16 - Two loudspeakers, A and B (see Fig. E16.35), are...Ch. 16 - Two loudspeakers, A and B, are driven by the same...Ch. 16 - Two loudspeakers, A and B, are driven by the same...Ch. 16 - Two small stereo speakers are driven in step by...Ch. 16 - Two guitarists attempt to play the same note of...Ch. 16 - Prob. 16.41ECh. 16 - Adjusting Airplane Motors. The motors that drive...Ch. 16 - Two organ pipes, open at one end but closed at the...Ch. 16 - In Example 16.18 (Section 16.8), suppose the...Ch. 16 - On the planet Arrakis a male ornithoid is flying...Ch. 16 - A railroad train is traveling at 25.0 m/s in still...Ch. 16 - Two train whistles, A and B, each have a frequency...Ch. 16 - Moving Source vs. Moving Listener. (a) A sound...Ch. 16 - A swimming duck puddles the water with its feet...Ch. 16 - A railroad train is traveling at 30.0 m/s in still...Ch. 16 - A car alarm is emitting sound waves of frequency...Ch. 16 - While sitting in your car by the side of a country...Ch. 16 - Prob. 16.53ECh. 16 - The siren of a fire engine that is driving...Ch. 16 - A stationary police car emits a sound of frequency...Ch. 16 - How fast (as a percentage of light speed) would a...Ch. 16 - A jet plane flies overhead at Mach 1.70 and at a...Ch. 16 - The shock-wave cone created by a space shuttle at...Ch. 16 - A soprano and a bass are singing a duet. While the...Ch. 16 - CP The sound from a trumpet radiates uniformly in...Ch. 16 - Prob. 16.61PCh. 16 - CP A uniform 165-N bar is supported horizontally...Ch. 16 - An organ pipe has two successive harmonics with...Ch. 16 - Prob. 16.64PCh. 16 - Prob. 16.65PCh. 16 - A bat flies toward a wall, emitting a steady sound...Ch. 16 - The sound source of a ships sonar system operates...Ch. 16 - BIO Ultrasound in Medicine. A 2.00-MHZ sound wave...Ch. 16 - BIO Horseshoe bats (genus Rhinolophus) emit sounds...Ch. 16 - CP A police siren of frequency fsiren is attached...Ch. 16 - CP A turntable 1.50 m in diameter rotates at 75...Ch. 16 - DATA A long, closed cylindrical tank contains a...Ch. 16 - Prob. 16.73PCh. 16 - DATA Supernova! (a) Equation (16.30) can be...Ch. 16 - CALC Figure P16.75 shows the pressure fluctuation...Ch. 16 - CP Longitudinal Waves on a Spring. A long spring...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Some studies suggest that the upper frequency limit of hearing is determined by the diameter of the eardrum. The wavelength of the sound wave and the diameter of the eardrum are approximately equal at this upper limit. If the relationship holds exactly, what is the diameter of the eardrum of a person capable of hearing 20 000 Hz? (Assume a body temperature of 37.0C.)arrow_forwardA pipe is observed to have a fundamental frequency of 345 Hz. Assume the pipe is filled with air (v = 343 m/s). What is the length of the pipe if the pipe is a. closed at one end and b. open at both ends?arrow_forwardThe bulk modulus of water is 2.2 109 Pa (Table 15.2). The density of water is 103 kg/m3 (Table 15.1). Find the speed of sound in water and compare your answer with the value given in Table 17.1.arrow_forward
- A certain loudspeaker system emits sound isotropically with a frequency of 2000 Hz and an intensity of 0.960 mW/m2 at a distance of 6.10 m. Assume that there are no reflections. (a) What is the intensity at 30.0 m? At 6.10 m, what are (b) the displacement amplitude and (c) the pressure amplitude?arrow_forwardEstimate the speed of sound in air at standard temperature and pressure. The mass of 1 mole of air is given to be 29.0*1/1000 kg.arrow_forwardDetermine how much the average force acting on the eardrum of the human ear (area S = 66 mm?) is less than the pain threshold if the sound pressure is 145,4 Pa. The sound frequency is 1 kHz. The sound pressure corresponding to the pain threshold is considered equal to 200 Pa. Please enter the units of measurements in your answer.arrow_forward
- Approximately a third of people with normal hearing have ears that continuously emit a low-intensity sound outward through the ear canal. A person with such spontaneous otoacoustic emission is rarely aware of the sound, except perhaps in a noisefree environment, but occasionally the emission is loud enough to be heard by someone else nearby. In one observation, the sound wave had a frequency of 1665 Hz and a pressure amplitude of 1.13 *10-3 Pa. What were (a) the displacement amplitude and (b) the intensity of the wave emitted by the ear?arrow_forwardA sound wave of wavelength 40 cm travels in air. If the difference between the maximum and minimum pressures at a given point is 1'0 x 10 'N/m, find the amplitude of vibration of the particles of the medium. The bulk modulus of air is 1'4 x 10 N/m.arrow_forwardA sound wave of frequency 187 Hz has an intensity of 4.57 μW/m2. What is the amplitude of the air oscillations caused by this wave? (Take the speed of sound to be 343 m/s, and the density of air to be 1.21 kg/m3.)arrow_forward
- An experimenter wishes to generate in air a sound wave that has a displacement amplitude of 5.50 × 10-6 m. The pressure amplitude is to be limited to 0.840 Pa. What is the minimum wavelength the sound wave can have?arrow_forwardYour experiments on a particular insulator indicate that a 20 C the average speed of sound in the insulator is Vi = 7250 m/s Its bulk modulus is Bi = 450 GPa. Experimental results from your colleague show that a certain metal alloy has a density of rom = 7500 kg/m3 and a bulk modulus of Bm = 180 Gpa. The density of the insulator roi = 8561 kg/m3. The speed of sound in the metal alloy is Vm = 4898 m/s . A) Find the total amount of time t in seconds, It takes to travel through the structure in fig 1 the length of the structure is L = 1.0 m Alloy Insulator _______________________________________ L/2 L/2arrow_forwardDetermine how much the average force acting on the eardrum of the human ear (area S = 66 mm?) is greater than the hearing threshold if the sound pressure is 112,3 Pa. The sound frequency is 1 kHz. The sound pressure corresponding to the hearing threshold is taken equal to 0.02 MPa. Please enter the units of measurement in your answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning