Foundations of Materials Science and Engineering
Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16.13, Problem 48KCP
To determine

Write few application of rare earth alloy magnets.

Blurred answer
Students have asked these similar questions
! Required information Air at 25°C (cp=1006 J/kg.K) is to be heated to 58°C by hot oil at 80°C (cp = 2150 J/kg.K) in a cross-flow heat exchanger with air mixed and oil unmixed. The product of heat transfer surface area and the overall heat transfer coefficient is 750 W/K and the mass flow rate of air is twice that of oil. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Air Oil 80°C Determine the effectiveness of the heat exchanger.
In an industrial facility, a counter-flow double-pipe heat exchanger uses superheated steam at a temperature of 155°C to heat feed water at 30°C. The superheated steam experiences a temperature drop of 70°C as it exits the heat exchanger. The water to be heated flows through the heat exchanger tube of negligible thickness at a constant rate of 3.47 kg/s. The convective heat transfer coefficient on the superheated steam and water side is 850 W/m²K and 1250 W/m²K, respectively. To account for the fouling due to chemical impurities that might be present in the feed water, assume a fouling factor of 0.00015 m²-K/W for the water side. The specific heat of water is determined at an average temperature of (30 +70)°C/2 = 50°C and is taken to be J/kg.K. Cp= 4181 Water Steam What would be the required heat exchanger area in case of parallel-flow arrangement? The required heat exchanger area in case of parallel-flow arrangement is 1m².
A single-pass crossflow heat exchanger is used to cool jacket water (cp = 1.0 Btu/lbm.°F) of a diesel engine from 190°F to 140°F, using air (Cp = 0.245 Btu/lbm.°F) at inlet temperature of 90°F. Both air flow and water flow are unmixed. If the water and air mass flow rates are 85500 lbm/h and 400,000 lbm/h, respectively, determine the log mean temperature difference for this heat exchanger. Assume the correction factor F to be 0.92. Air flow (unmixed) Water flow (unmixed) The log mean temperature difference of the heat exchanger is °F.

Chapter 16 Solutions

Foundations of Materials Science and Engineering

Ch. 16.13 - Prob. 11KCPCh. 16.13 - Prob. 12KCPCh. 16.13 - Prob. 13KCPCh. 16.13 - Prob. 14KCPCh. 16.13 - Prob. 15KCPCh. 16.13 - Prob. 16KCPCh. 16.13 - Prob. 17KCPCh. 16.13 - Prob. 18KCPCh. 16.13 - Prob. 19KCPCh. 16.13 - Prob. 20KCPCh. 16.13 - Prob. 21KCPCh. 16.13 - Prob. 22KCPCh. 16.13 - Prob. 23KCPCh. 16.13 - Prob. 24KCPCh. 16.13 - Prob. 25KCPCh. 16.13 - Prob. 26KCPCh. 16.13 - Prob. 27KCPCh. 16.13 - Prob. 28KCPCh. 16.13 - Prob. 29KCPCh. 16.13 - Prob. 30KCPCh. 16.13 - Prob. 31KCPCh. 16.13 - Prob. 32KCPCh. 16.13 - Prob. 33KCPCh. 16.13 - Prob. 34KCPCh. 16.13 - Prob. 35KCPCh. 16.13 - What are eddy currents? How are they created in a...Ch. 16.13 - Prob. 37KCPCh. 16.13 - Prob. 38KCPCh. 16.13 - Prob. 39KCPCh. 16.13 - Prob. 40KCPCh. 16.13 - What compositions of NiFe alloys are especially...Ch. 16.13 - Prob. 42KCPCh. 16.13 - Prob. 43KCPCh. 16.13 - Prob. 44KCPCh. 16.13 - Prob. 45KCPCh. 16.13 - Prob. 46KCPCh. 16.13 - Prob. 47KCPCh. 16.13 - Prob. 48KCPCh. 16.13 - Prob. 49KCPCh. 16.13 - Prob. 50KCPCh. 16.13 - Prob. 51KCPCh. 16.13 - Prob. 52KCPCh. 16.13 - Prob. 53KCPCh. 16.13 - Prob. 54KCPCh. 16.13 - Prob. 55KCPCh. 16.13 - Prob. 56KCPCh. 16.13 - Prob. 57KCPCh. 16.13 - Prob. 58KCPCh. 16.13 - Prob. 59KCPCh. 16.13 - Prob. 60KCPCh. 16.13 - Prob. 61KCPCh. 16.13 - Prob. 62AAPCh. 16.13 - Prob. 63AAPCh. 16.13 - Prob. 64AAPCh. 16.13 - Prob. 65AAPCh. 16.13 - Prob. 66AAPCh. 16.13 - Gadolinium at very low temperatures has an average...Ch. 16.13 - Prob. 68AAPCh. 16.13 - Prob. 69AAPCh. 16.13 - Prob. 70AAPCh. 16.13 - Prob. 71AAPCh. 16.13 - Prob. 72AAPCh. 16.13 - Prob. 73AAPCh. 16.13 - Prob. 74AAPCh. 16.13 - Prob. 75AAPCh. 16.13 - Draw a hysteresis B-H loop for a ferromagnetic...Ch. 16.13 - Describe what happens to the magnetic induction...Ch. 16.13 - What happens to the magnetic domains of a...Ch. 16.13 - What are desirable magnetic properties for a soft...Ch. 16.13 - What are hysteresis energy losses? What factors...Ch. 16.13 - How does the AC frequency affect the hysteresis...Ch. 16.13 - How can eddy currents be reduced in metallic...Ch. 16.13 - Why does the addition of 3% to 4% silicon to iron...Ch. 16.13 - What disadvantages are there to the addition of...Ch. 16.13 - Why does a laminated structure increase the...Ch. 16.13 - Prob. 86AAPCh. 16.13 - Prob. 87AAPCh. 16.13 - Prob. 88AAPCh. 16.13 - Prob. 89AAPCh. 16.13 - Prob. 90AAPCh. 16.13 - Prob. 91AAPCh. 16.13 - Prob. 92AAPCh. 16.13 - Prob. 93AAPCh. 16.13 - Prob. 94AAPCh. 16.13 - Prob. 95AAPCh. 16.13 - Prob. 96AAPCh. 16.13 - Prob. 97AAPCh. 16.13 - Prob. 98AAPCh. 16.13 - Prob. 99AAPCh. 16.13 - Prob. 100AAPCh. 16.13 - Prob. 101AAPCh. 16.13 - Prob. 102AAPCh. 16.13 - Prob. 103SEPCh. 16.13 - Prob. 104SEPCh. 16.13 - Prob. 105SEPCh. 16.13 - Prob. 106SEP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning
Dislocations and Plastic Deformation; Author: LearnChemE;https://www.youtube.com/watch?v=cpvTwYAUeA8;License: Standard Youtube License