COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
2nd Edition
ISBN: 9781319414597
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16, Problem 89QAP
To determine

(a)

An expression for the electric field in the radial region ri.

Expert Solution
Check Mark

Answer to Problem 89QAP

An expression for the electric field in the radial region ri is, Er<Ri=0

Explanation of Solution

Given:

Radius of inner sphere, Ri

Surface Charge density for inner sphere, +σi

Radius of outer sphere, Ro

Surface Charge density for outer sphere, σo

Formula used:

The electric force is given by,
  E=σ2ε0

Where,
  E =Electric field
  σ = Surface charges density
  ε0 =Permittivity of free space

Calculation:

The sphere is conducting. The charge enclosed by the sphere is zero. Thus, the electric field inside the sphere is zero.
  Er<Ri=0

To determine

(b)

An expression for the electric field in the radial region Rio.

Expert Solution
Check Mark

Answer to Problem 89QAP

An expression for the electric field in the radial region Rio is, ERi<r<Ro=σiRi2ε0r2 and directed outside from the sphere.

Explanation of Solution

Given:

Radius of inner sphere, Ri

Surface Charge density for inner sphere, +σi

Radius of outer sphere, Ro

Surface Charge density for outer sphere, σo

Formula used:

The electric force is given by,
  E=Q4πε0r2

Where,
  E =Electric field
  Q = Charge
  ε0 =Permittivity of free space
r=Distance

Calculation:

The electric force is given by,
  E=Q4πε0r2

But, Q=σiA

  E=σi4πRi24πε0r2ERi<r<Ro=σiRi2ε0r2

It is directed outside from the sphere.

To determine

(c)

An expression for the electric field in the radial region r>Ro.

Expert Solution
Check Mark

Answer to Problem 89QAP

An expression for the electric field in the radial region r>Rois, E=σiRi2σoRo2ε0r2

Explanation of Solution

Given:

Radius of inner sphere, Ri

Surface Charge density for inner sphere, +σi

Radius of outer sphere, Ro

Surface Charge density for outer sphere, σo

Formula used:

The electric force is given by,
  E=Q4πε0r2

Where,
  E =Electric field
  Q = Charge
  ε0 =Permittivity of free space
r=DistanceCalculation:

The electric field is given by,
  E=Q4πε0r2

But, Q=σiA

  Ei=σi4πRi24πε0r2Ei=σiRi2ε0r2

And
  Eo=σi4πRo24πε0r2Eo=σiRo2ε0r2

The electric field is given by,
  E=EiEoE=σiRi2ε0r2σoRo2ε0r2E=σiRi2σoRo2ε0r2

If the value of σiRi2σoRo2>1 The field is directed outwards.

If the value of σiRi2σoRo2<1 The field is directed inwards.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A rectangle measuring 30.0 cm by 40.0 cm is located inside a region of a spatially uniform magnetic field of 1.70 T , with the field perpendicular to the plane of the coil (the figure (Figure 1)). The coil is pulled out at a steady rate of 2.00 cm/s traveling perpendicular to the field lines. The region of the field ends abruptly as shown. Find the emf induced in this coil when it is all inside the field, when it is partly in the field, and when it is fully outside. Please show all steps.
A rectangular circuit is moved at a constant velocity of 3.00 m/s into, through, and then out of a uniform 1.25 T magnetic field, as shown in the figure (Figure 1). The magnetic field region is considerably wider than 50.0 cm . Find the direction (clockwise or counterclockwise) of the current induced in the circuit as it is going into the magnetic field (the first case), totally within the magnetic field but still moving (the second case), and moving out of the field (the third case).  Find the magnitude of the current induced in the circuit as it is going into the magnetic field . Find the magnitude of the current induced in the circuit as it is totally within the magnetic field but still moving. Find the magnitude of the current induced in the circuit as it is moving out of the field. Please show all steps
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all steps

Chapter 16 Solutions

COLLEGE PHYSICS LL W/ 6 MONTH ACCESS

Ch. 16 - Prob. 11QAPCh. 16 - Prob. 12QAPCh. 16 - Prob. 13QAPCh. 16 - Prob. 14QAPCh. 16 - Prob. 15QAPCh. 16 - Prob. 16QAPCh. 16 - Prob. 17QAPCh. 16 - Prob. 18QAPCh. 16 - Prob. 19QAPCh. 16 - Prob. 20QAPCh. 16 - Prob. 21QAPCh. 16 - Prob. 22QAPCh. 16 - Prob. 23QAPCh. 16 - Prob. 24QAPCh. 16 - Prob. 25QAPCh. 16 - Prob. 26QAPCh. 16 - Prob. 27QAPCh. 16 - Prob. 28QAPCh. 16 - Prob. 29QAPCh. 16 - Prob. 30QAPCh. 16 - Prob. 31QAPCh. 16 - Prob. 32QAPCh. 16 - Prob. 33QAPCh. 16 - Prob. 34QAPCh. 16 - Prob. 35QAPCh. 16 - Prob. 36QAPCh. 16 - Prob. 37QAPCh. 16 - Prob. 38QAPCh. 16 - Prob. 39QAPCh. 16 - Prob. 40QAPCh. 16 - Prob. 41QAPCh. 16 - Prob. 42QAPCh. 16 - Prob. 43QAPCh. 16 - Prob. 44QAPCh. 16 - Prob. 45QAPCh. 16 - Prob. 46QAPCh. 16 - Prob. 47QAPCh. 16 - Prob. 48QAPCh. 16 - Prob. 49QAPCh. 16 - Prob. 50QAPCh. 16 - Prob. 51QAPCh. 16 - Prob. 52QAPCh. 16 - Prob. 53QAPCh. 16 - Prob. 54QAPCh. 16 - Prob. 55QAPCh. 16 - Prob. 56QAPCh. 16 - Prob. 57QAPCh. 16 - Prob. 58QAPCh. 16 - Prob. 59QAPCh. 16 - Prob. 60QAPCh. 16 - Prob. 61QAPCh. 16 - Prob. 62QAPCh. 16 - Prob. 63QAPCh. 16 - Prob. 64QAPCh. 16 - Prob. 65QAPCh. 16 - Prob. 66QAPCh. 16 - Prob. 67QAPCh. 16 - Prob. 68QAPCh. 16 - Prob. 69QAPCh. 16 - Prob. 70QAPCh. 16 - Prob. 71QAPCh. 16 - Prob. 72QAPCh. 16 - Prob. 73QAPCh. 16 - Prob. 74QAPCh. 16 - Prob. 75QAPCh. 16 - Prob. 76QAPCh. 16 - Prob. 77QAPCh. 16 - Prob. 78QAPCh. 16 - Prob. 79QAPCh. 16 - Prob. 80QAPCh. 16 - Prob. 81QAPCh. 16 - Prob. 82QAPCh. 16 - Prob. 83QAPCh. 16 - Prob. 84QAPCh. 16 - Prob. 85QAPCh. 16 - Prob. 86QAPCh. 16 - Prob. 87QAPCh. 16 - Prob. 88QAPCh. 16 - Prob. 89QAPCh. 16 - Prob. 90QAPCh. 16 - Prob. 91QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY