EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16, Problem 84P

(a)

To determine

To Find:The maximum kinetic energy of the wire.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

Length of the wire, l=2.00m

Tension in the wire, T=40.0N

Mass of the wire, m=0.100kg

At the midpoint, amplitude is A=2.00cm = 0.02 m

Formula Used:

Maximum kinetic energy of the wire can be obtained by:

  K.Emax=14mω2A2

Here, m is the mass, ω is the angular frequency and A is the amplitude of the wave.

  ω=2πf

Here, f is the frequency which can be obtained by:

  f=12lTμ

  μ=ml

Calculations:

Find the mass per unit length:

  μ=ml=0.100kg2.00m=0.05kg/m

Now calculate the frequency of the vibrating wire in fundamental mode:

  f=12lTμ=12×2.0040.00.1/2.00=7Hz

The angular frequency is:

  ω=2πf=2π(7.00)44rad/s

Now substitute all the known values to find the maximum kinetic energy of the wire:

  K.Emax=14mω2A2=14(0.100)(44rad/s)2(0.02m)2=0.0194J=19.4mJ

Conclusion:

Thus, the maximum kinetic energy of the wire is 19.4mJ .

(b)

To determine

To Find: The kinetic energy of the wire at the instant when transverse displacement is given by y=0.0200sin(π2x) .

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

Length of the wire, l=2.00m

Tension in the wire, T=40.0N

Mass of the wire, m=0.100kg

At the midpoint, amplitude is A=2.00cm = 0.02 m

Displacement, y=0.0200sin(π2x)

  0.00mx2.00m

Formula Used:

Wave equation of standing wave in fundamental mode:

  y=Asin(kx)cos(ωt)

Calculations:

Compare the given displacement and the wave equation:

  y=0.0200sin(π2x) and y=Asin(kx)cos(ωt)

  cos(ωt)=1ω=0K.E=0

Conclusion:

Thus, the kinetic energy at the given instant would be zero.

(c)

To determine

To Find: The value of x for which the average value of the kinetic energy per unit length is the greatest.

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

Length of the wire, l=2.00m

Tension in the wire, T=40.0N

Mass of the wire, m=0.100kg

At the midpoint, amplitude is A=2.00cm = 0.02 m

Displacement, y=0.0200sin(π2x)

  0.00mx2.00m

Formula Used:

Average value of kinetic energy per unit length:

  dKdx=12μ(yt)2

Here, μ is the mass per unit length.

Wave equation of standing wave in fundamental mode:

  y=Asin(kx)cos(ωt)

Calculations:

  yt=Asinkx(ωsinωt)

For maxima, equate the derivative with zero.

  sin(kx)=0kx=0x=0orkx=πx=π2π/λx=λ2=(2l)2x=2(2.00)2=2.00m

Conclusion:

Thus, the value of x for which the average value of the kinetic energy per unit length is the greatest is 0.0m&2.00m .

(d)

To determine

To Find: The value of x for which the elastic potential energy per unit length has the maximum value.

(d)

Expert Solution
Check Mark

Explanation of Solution

Given:

Length of the wire, l=2.00m

Tension in the wire, T=40.0N

Mass of the wire, m=0.100kg

At the midpoint, amplitude is A=2.00cm = 0.02 m

Displacement, y=0.0200sin(π2x)

  0.00mx2.00m

Formula Used:

Average value of elastic potential energy per unit length:

  dUdx=12μ(yx)2

Here, μ is the mass per unit length.

Wave equation of standing wave in fundamental mode:

  y=Asin(kx)cos(ωt)

Calculations:

  yx=Akcoskxcosωt

For maxima, equate the derivative with zero.

  cos(kx)=0kx=π2x=π/22π/λx=λ4=2l4x=2(2.00)4=1.0m

Conclusion:

Thus, the value of x for which the average value of the elastic potential energy per unit length is the greatest is at 1.0m .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)
What is integrated science. What is fractional distillation What is simple distillation
19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וח

Chapter 16 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY