The value of ion-product for water should be determined at 25 ∘ C . Concept Introduction: The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic. The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows: p H = − log H + Here, H + is concentration of hydrogen ion. Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows: p O H = − log OH − Here, OH − is concentration of hydroxide ion. pH and pOH of a solution are related to each other as follows: p H + p O H = 14 In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the pH value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.
The value of ion-product for water should be determined at 25 ∘ C . Concept Introduction: The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic. The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows: p H = − log H + Here, H + is concentration of hydrogen ion. Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows: p O H = − log OH − Here, OH − is concentration of hydroxide ion. pH and pOH of a solution are related to each other as follows: p H + p O H = 14 In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the pH value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.
Solution Summary: The author explains that the concentration of hydrogen ions in a solution determines the acidity of the solution.
The value of ion-product for water should be determined at 25∘C.
Concept Introduction:
The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.
The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:
pH=−logH+
Here, H+ is concentration of hydrogen ion.
Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:
pOH=−logOH−
Here, OH− is concentration of hydroxide ion.
pH and pOH of a solution are related to each other as follows:
pH+pOH=14
In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the pH value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.
For the titration of a divalent metal ion (M2+) with EDTA, the stoichiometry of the reaction is typically:
1:1 (one mole of EDTA per mole of metal ion)
2:1 (two moles of EDTA per mole of metal ion)
1:2 (one mole of EDTA per two moles of metal ion)
None of the above
Please help me solve this reaction.
Indicate the products obtained by mixing 2,2-dimethylpropanal with acetaldehyde and sodium ethoxide in ethanol.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell