Concept explainers
In Section 16.7, we derived the speed of sound in a gas using the impulse–momentum theorem applied to the cylinder of gas in Figure 16.20. Let us find the speed of sound in a gas using a different approach based on the element of gas in Figure 16.18. Proceed as follows. (a) Draw a force diagram for this element showing the forces exerted on the left and right surfaces due to the pressure of the gas on either side of the element. (b) By applying Newton’s second law to the element, show that
(c) By substituting ΔP = −(B ∂s/∂x) (Eq. 16.30), derive the following wave equation for sound:
(d) To a mathematical physicist, this equation demonstrates the existence of sound waves and determines their speed. As a physics student, you must take another step or two. Substitute into the wave equation the trial solution s(x, t) = smax cos (kx − ωt). Show that this function satisfies the wave equation, provided
(a)
The force diagram for this element showing the force exerted on the left and the right surface.
Answer to Problem 60CP
The force diagram for this element showing the force exerted on the left and the right surface is
Explanation of Solution
Force diagram contains all the forces acting on the body. It contains the direction of the each force acting on the body represents at its top and bottom end or left and right sides.
The force diagram for this element showing the force exerted on the left and the right surface is shown below.
Figure (1)
The force diagram of the element of gas in Figure (1) indicates the force exerted on the right and left surfaces due the pressure of the gas on the either side of the gas.
(b)
The expression,
Answer to Problem 60CP
The expression
Explanation of Solution
Let
The net force to the right on the chunk of air in Figure (1) is,
The force due to atmosphere is,
Here,
Differentiate the equation (1) with respect to
Formula to calculate the mass of the air is,
Here,
Formula to calculate the acceleration is,
Here,
From Newton’s second law, formula to calculate the Force is,
Substitute
Conclusion:
Therefore the expression,
(c)
The wave equation for sound is
Answer to Problem 60CP
The following wave equation for sound is
Explanation of Solution
The value of the
From part (b), the given expression is,
Substitute
Thus, the wave equation for sound is
Conclusion:
Therefore, the wave equation for sound is
(d)
The function
Answer to Problem 60CP
The function
Explanation of Solution
The given wave equation is,
Apply the trial solution in the above equation.
Double differentiate the equation (1) with respect to
Double differentiate the equation (1) with respect to
The wave equation for sound in part (c) is,
Substitute
Thus, the function
Conclusion:
Therefore, the function
Want to see more full solutions like this?
Chapter 16 Solutions
PHYSICS FOR SCI. & ENGR(LL W/WEBASSIGN)
Additional Science Textbook Solutions
Essentials of Human Anatomy & Physiology (12th Edition)
Microbiology Fundamentals: A Clinical Approach
Fundamentals Of Thermodynamics
Chemistry: Atoms First
Applications and Investigations in Earth Science (9th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
- ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forward
- Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forwardNo chatgpt pls will upvotearrow_forward
- 14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forwardNo chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill