Concept explainers
In Section 16.7, we derived the speed of sound in a gas using the impulse–momentum theorem applied to the cylinder of gas in Figure 16.20. Let us find the speed of sound in a gas using a different approach based on the element of gas in Figure 16.18. Proceed as follows. (a) Draw a force diagram for this element showing the forces exerted on the left and right surfaces due to the pressure of the gas on either side of the element. (b) By applying Newton’s second law to the element, show that
(c) By substituting ΔP = −(B ∂s/∂x) (Eq. 16.30), derive the following wave equation for sound:
(d) To a mathematical physicist, this equation demonstrates the existence of sound waves and determines their speed. As a physics student, you must take another step or two. Substitute into the wave equation the trial solution s(x, t) = smax cos (kx − ωt). Show that this function satisfies the wave equation, provided
(a)

The force diagram for this element showing the force exerted on the left and the right surface.
Answer to Problem 60CP
The force diagram for this element showing the force exerted on the left and the right surface is
Explanation of Solution
Force diagram contains all the forces acting on the body. It contains the direction of the each force acting on the body represents at its top and bottom end or left and right sides.
The force diagram for this element showing the force exerted on the left and the right surface is shown below.
Figure (1)
The force diagram of the element of gas in Figure (1) indicates the force exerted on the right and left surfaces due the pressure of the gas on the either side of the gas.
(b)

The expression,
Answer to Problem 60CP
The expression
Explanation of Solution
Let
The net force to the right on the chunk of air in Figure (1) is,
The force due to atmosphere is,
Here,
Differentiate the equation (1) with respect to
Formula to calculate the mass of the air is,
Here,
Formula to calculate the acceleration is,
Here,
From Newton’s second law, formula to calculate the Force is,
Substitute
Conclusion:
Therefore the expression,
(c)

The wave equation for sound is
Answer to Problem 60CP
The following wave equation for sound is
Explanation of Solution
The value of the
From part (b), the given expression is,
Substitute
Thus, the wave equation for sound is
Conclusion:
Therefore, the wave equation for sound is
(d)

The function
Answer to Problem 60CP
The function
Explanation of Solution
The given wave equation is,
Apply the trial solution in the above equation.
Double differentiate the equation (1) with respect to
Double differentiate the equation (1) with respect to
The wave equation for sound in part (c) is,
Substitute
Thus, the function
Conclusion:
Therefore, the function
Want to see more full solutions like this?
Chapter 16 Solutions
PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES
Additional Science Textbook Solutions
Essentials of Human Anatomy & Physiology (12th Edition)
Microbiology Fundamentals: A Clinical Approach
Fundamentals Of Thermodynamics
Chemistry: Atoms First
Applications and Investigations in Earth Science (9th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





