Conceptual Phy. Sci. - With Access (Custom)
6th Edition
ISBN: 9781323406588
Author: Hewitt
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 5RCQ
How is a solution different from a suspension?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A object of mass 3.00 kg is subject to a force FX that varies with position as in the figure below.
Fx (N)
4
3
2
1
x(m)
2 4 6 8 10 12 14 16 18 20
i
(a) Find the work done by the force on the object as it moves from x = 0 to x = 5.00 m.
J
(b) Find the work done by the force on the object as it moves from x
= 5.00 m to x = 11.0 m.
]
(c) Find the work done by the force on the object as it moves from x = 11.0 m to x = 18.0 m.
J
(d) If the object has a speed of 0.400 m/s at x = 0, find its speed at x = 5.00 m and its speed at x
speed at x = 5.00 m
speed at x = 18.0 m
m/s
m/s
=
18.0 m.
A crate with a mass of 74.0 kg is pulled up an inclined surface by an attached cable, which is driven by a motor. The crate moves a distance of 70.0 m along the surface at a constant speed of 3.3 m/s. The surface is inclined at an angle of 30.0° with the horizontal. Assume friction is
negligible.
(a) How much work (in kJ) is required to pull the crate up the incline?
kJ
(b) What power (expressed in hp) must a motor have to perform this task?
hp
A deli uses an elevator to move items from one level to another. The elevator has a mass of 550 kg and moves upward with constant acceleration for 2.00 s until it reaches its cruising speed of 1.75 m/s. (Note: 1 hp
(a) What is the average power (in hp) of the elevator motor during this time interval?
Pave =
hp
(b) What is the motor power (in hp) when the elevator moves at its cruising speed?
Pcruising
hp
=
746 W.)
Chapter 16 Solutions
Conceptual Phy. Sci. - With Access (Custom)
Ch. 16 - Prob. 1RCQCh. 16 - Prob. 2RCQCh. 16 - Prob. 3RCQCh. 16 - Prob. 4RCQCh. 16 - How is a solution different from a suspension?Ch. 16 - How can a solution be separated from a suspension?Ch. 16 - What happens to the volume of a sugar solution as...Ch. 16 - Prob. 8RCQCh. 16 - What does it mean to say that a solution is...Ch. 16 - Is concentration typically given with the volume...
Ch. 16 - Why does the solubility of a gas solute in a...Ch. 16 - Why do sugar crystals dissolve faster when...Ch. 16 - Is sugar a polar or nonpolar substance?Ch. 16 - Which portion of a soap molecule is nonpolar?Ch. 16 - What is the difference between a soap and a...Ch. 16 - Prob. 16RCQCh. 16 - Why are soap molecules so attracted to calcium and...Ch. 16 - Why is treated water sprayed into the air before...Ch. 16 - What are two ways in which people disinfect water...Ch. 16 - What naturally occurring element has been...Ch. 16 - Why can wastewater treatment requirements in...Ch. 16 - What is the first step in treating raw sewage?Ch. 16 - Prob. 23RCQCh. 16 - Prob. 30TASCh. 16 - Prob. 31TASCh. 16 - Prob. 32TASCh. 16 - How much sodium chloride, in grams, is needed to...Ch. 16 - If water is added to 1 mole of sodium chloride in...Ch. 16 - A student is told to use 20.0 g of sodium chloride...Ch. 16 - Rank the following solutions in order of...Ch. 16 - Rank the following compounds in order of...Ch. 16 - Prob. 38TARCh. 16 - How might you separate a mixture of sand and salt?...Ch. 16 - Mixtures can be separated into their components by...Ch. 16 - Why can't the elements of a compound be separated...Ch. 16 - Many dry cereals are fortified with iron, which is...Ch. 16 - The Chemist's Classification of Matter 43....Ch. 16 - Classify each of the following as an element,...Ch. 16 - 45. Which of these boxes best represents a...Ch. 16 - Prob. 46ECh. 16 - Prob. 47ECh. 16 - Prob. 48ECh. 16 - Which is more dense: air saturated with water...Ch. 16 - How many sugar molecules are there in a 2 M sugar...Ch. 16 - Prob. 51ECh. 16 - Which should weigh more: 100 mL of fresh water or...Ch. 16 - Explain why, for these three substances, the...Ch. 16 - The boiling point of 1,4-butanediol is 230C. Would...Ch. 16 - Based on atomic size, which would you expect to be...Ch. 16 - If nitrogen, N2, were pumped into your lungs at...Ch. 16 - Prob. 57ECh. 16 - Account for the observation that ethanol, C2H5OH,...Ch. 16 - At 10C, which is more concentrated: a saturated...Ch. 16 - Why is rain or snow called precipitation?Ch. 16 - Prob. 61ECh. 16 - Some bottled water is now advertised as containing...Ch. 16 - Two plastic bottles of fresh seltzer water are...Ch. 16 - Why can 500 mL of fresh water absorb more gaseous...Ch. 16 - Would you expect to find more dissolved oxygen in...Ch. 16 - Soaps, Detergents, and Hard Water Fatty acid...Ch. 16 - Fatty acid molecules can also align to form a...Ch. 16 - Prob. 68ECh. 16 - A scum forms on the surface of boiling hard water....Ch. 16 - Calcium and magnesium ions are more attracted to...Ch. 16 - Phosphate ions, PO43-, were once added to...Ch. 16 - Oils at the top of a tree have a higher...Ch. 16 - Why is distilling water so relatively expensive?Ch. 16 - What reverses with reverse osmosis?Ch. 16 - Why is it significantly less costly to purify...Ch. 16 - Prob. 76ECh. 16 - Many homeowners get their drinking; water piped up...Ch. 16 - Is the decomposition of food by bacteria in our...Ch. 16 - Where does most of the solid mass of raw sewage...Ch. 16 - Why is flushing a toilet with clean water from a...Ch. 16 - Why are people so willing to buy bottled water...Ch. 16 - It is possible to tow icebergs to coastal cities...Ch. 16 - Someone argues that he or she doesn't drink tap...Ch. 16 - Prob. 2RATCh. 16 - The air in your house is an example of a (a)...Ch. 16 - Half-frozen fruit punch is always sweeter than the...Ch. 16 - Why is sodium chloride, NaCl, insoluble in...Ch. 16 - Fish don't live very long in water that has just...Ch. 16 - Prob. 7RATCh. 16 - What is an advantage of using chlorine gas to...Ch. 16 - Why do red blood cells, which contain an aqueous...Ch. 16 - A stagnant pond smells worse than a babbling brook...
Additional Science Textbook Solutions
Find more solutions based on key concepts
2. A person’s heart rate is given in beats per minute. Is this a period or a frequency?
College Physics: A Strategic Approach (3rd Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
An obese 55-year-old woman consults her physician about minor chest pains during exercise. Explain the physicia...
Biology: Life on Earth with Physiology (11th Edition)
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
EVOLUTION CONNECTION Describe how gene flow, genetic drift, and natural sclection all can influence macroevolut...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 1.40-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Figure a). The object has a speed of v₁ = 3.50 m/s when it makes contact with a light spring (Figure b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Figure c). The object is then forced toward the left by the spring (Figure d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Figure e). d m v=0 -D- www (a) Find the distance of compression d (in m). m (b) Find the speed v (in m/s) at the unstretched position when the object is moving to the left (Figure d). m/s (c) Find the distance D (in m) where the object comes to rest. m (d) What If? If the object becomes attached securely to the end of the spring when it makes contact, what is the new value of the distance D (in m) at which the object will come to…arrow_forwardAs shown in the figure, a 0.580 kg object is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the object travels along a frictionless, horizontal surface to point A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the object at the bottom of the track is VA = 13.0 m/s, and the object experiences an average frictional force of 7.00 N while sliding up the track. R (a) What is x? m A (b) If the object were to reach the top of the track, what would be its speed (in m/s) at that point? m/s (c) Does the object actually reach the top of the track, or does it fall off before reaching the top? O reaches the top of the track O falls off before reaching the top ○ not enough information to tellarrow_forwardA block of mass 1.4 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest. wwww wwwwww a F x = 0 0 b i (a) A constant friction force of 4.4 N retards the block's motion from the moment it is released. Using an energy approach, find the position x of the block at which its speed is a maximum. ст (b) Explore the effect of an increased friction force of 13.0 N. At what position of the block does its maximum speed occur in this situation? cmarrow_forward
- You have a new internship, where you are helping to design a new freight yard for the train station in your city. There will be a number of dead-end sidings where single cars can be stored until they are needed. To keep the cars from running off the tracks at the end of the siding, you have designed a combination of two coiled springs as illustrated in the figure below. When a car moves to the right in the figure and strikes the springs, they exert a force to the left on the car to slow it down. Total force (N) 2000 1500 1000 500 Distance (cm) 10 20 30 40 50 60 i Both springs are described by Hooke's law and have spring constants k₁ = 1,900 N/m and k₂ = 2,700 N/m. After the first spring compresses by a distance of d = 30.0 cm, the second spring acts with the first to increase the force to the left on the car in the figure. When the spring with spring constant k₂ compresses by 50.0 cm, the coils of both springs are pressed together, so that the springs can no longer compress. A typical…arrow_forwardA spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = incline angle is 0 = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest? m k www m 0.750 m/s. Thearrow_forwardA block of mass m = 2.50 kg situated on an incline at an angle of k=100 N/m www Ө m = 50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched. (a) How far does it move down the frictionless incline before coming to rest? m (b) What is its acceleration at its lowest point? Magnitude m/s2 Direction O up the incline down the inclinearrow_forward
- (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. 3.00 m -A B C -6.00 m (b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B? ○ Yes No If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.) marrow_forwardA ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. т h m a d T b (a) Find the speed of the ball just as it touches the spring. m/s (b) Find the force constant of the spring. kN/marrow_forwardTruck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 x 105 N/m, and y = 0.500 m. Truck body yo Main leaf spring -"Helper" spring Axle (a) What is the compression of the leaf spring for a load of 6.00 × 105 N? m (b) How much work is done in compressing the springs? ]arrow_forward
- A block of mass m₁ = 10.0 kg is connected to a block of mass m₂ 34.0 kg by a massless string that passes over a light, frictionless pulley. The 34.0-kg block is connected to a spring that has negligible mass and a force constant of k = 200 N/m as shown in the figure below. The spring is unstretched when the system is as shown in the figure, and the incline is frictionless. The 10.0-kg block is pulled a distance h = 22.0 cm down the incline of angle = 40.0° and released from rest. Find the speed of each block when the spring is again unstretched. Vm1 × 1.32 Vm2 = 1.32 × m/s m/sarrow_forwardA block of mass m₁ = 10.0 kg is connected to a block of mass m₂ = 34.0 kg by a massless string that passes over a light, frictionless pulley. The 34.0-kg block is connected to a spring that has negligible mass and a force constant of k = 200 N/m as shown in the figure below. The spring is unstretched when the system is as shown in the figure, and the incline is frictionless. The 10.0-kg block is pulled a distance h = 22.0 cm down the incline of angle 0 = 40.0° and released from rest. Find the speed of each block when the spring is again unstretched. m/s Vm1 Vm2 m/s mi m2 k iarrow_forwardTruck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as in the figure below. The helper spring engages when the main leaf spring is compressed by distance yo, and then helps to support any additional load. Consider a leaf spring constant of 5.45 × 105 N/m, helper spring constant of 3.60 × 105 N/m, and y = 0.500 m. Truck body Dyo Axle (a) What is the compression of the leaf spring for a load of 4.90 × 105 N? m (b) How much work is done compressing the springs? ]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning


Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY