GO In Fig. 16-42, a string, tied to a sinusoidal oscillator at P and running over a support at Q , is stretched by a block of mass m. Separation L = 1.20 m, linear density µ = 1.6 g/m, and the oscillator frequency f = 120 Hz. The amplitude of the motion at P is small enough for that point to be considered a node. A node also exists at Q. (a) What mass m allows the oscillator to set up the fourth harmonic on the string? (b) What standing wave mode, if any, can be set up if m = 1.00 kg? Figure 16-42 Problems 58 and 60.
GO In Fig. 16-42, a string, tied to a sinusoidal oscillator at P and running over a support at Q , is stretched by a block of mass m. Separation L = 1.20 m, linear density µ = 1.6 g/m, and the oscillator frequency f = 120 Hz. The amplitude of the motion at P is small enough for that point to be considered a node. A node also exists at Q. (a) What mass m allows the oscillator to set up the fourth harmonic on the string? (b) What standing wave mode, if any, can be set up if m = 1.00 kg? Figure 16-42 Problems 58 and 60.
GO In Fig. 16-42, a string, tied to a sinusoidal oscillator at P and running over a support at Q, is stretched by a block of mass m. Separation L = 1.20 m, linear density µ = 1.6 g/m, and the oscillator frequency f = 120 Hz. The amplitude of the motion at P is small enough for that point to be considered a node. A node also exists at Q. (a) What mass m allows the oscillator to set up the fourth harmonic on the string? (b) What standing wave mode, if any, can be set up if m = 1.00 kg?
What is the resistance (in (2) of a 27.5 m long piece of 17 gauge copper wire having a 1.150 mm diameter?
0.445
ΧΩ
Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring).
d.
Ag
dFe
= 2.47
×
Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring).
d
Ag
= 2.51
dFe
×
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.