PHYSICS
5th Edition
ISBN: 2818440038631
Author: GIAMBATTISTA
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 57P
Problems 57–59. After the electrons in Example 16.9 pass through the anode, they are moving in the z-direction at a speed of 8.4 × 106 m/s. They then pass between a pair of vertical parallel plates (A) (see Fig. 16.39) and then between a pair of horizontal parallel plates (B). All four of these plates are squares 2.50 cm on a side. The plates of each pair are separated by 1.50 cm.
57 If the electric field between plates (A) is 1.0 × 103 N/C in the +x-direction, what is the horizontal deflection (Δx) of the beam as it exits the region between plates (A)?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron is released 8.7 cm from a very long nonconducting rod with a uniform 7.0 μC/m. What is the magnitude of the electron's initial acceleration?
You are working on a research project in which you must control the direction of travel of electrons using deflection plates. You have devised the apparatus shown in the figure below.
Vi
x
E
=
>
►
1
+ + + + + + + + + + + +
The plates are of length = 0.250 m and are separated by a distance d = 1.58 cm. Electrons are fired at v; = 5.10 × 106 m/s into a uniform electric field from the left edge of the lower, positive plate, aimed directly at the right edge of the upper, negative plate. Therefore, if
there is no electric field between the plates, the electrons will follow the broken line in the figure. With an electric field existing between the plates, the electrons will follow a curved path, bending downward.
(a) Determine the range of angles (in degrees) over which the electron can leave the apparatus. (Assume 0 is measured counterclockwise from the +x-axis. Enter your answers as a comma-separated list from smallest to largest. Do not enter units in your answer.)
(min/max)=
C
(b)…
A proton is fired from far away towards the nucleus of a mercury atom. Mercury is element number 80, and the diameter of the nucleus is 14.0 fm. If the proton is fired at a speed of 13600000 m/s, what is its closest approach to the surface of the nucleus (in fm)? Assume that the nucleus remains at rest.
Chapter 16 Solutions
PHYSICS
Ch. 16.1 - 16.1 A glass rod and piece of silk are both...Ch. 16.1 - Prob. 16.1PPCh. 16.2 - Prob. 16.2PPCh. 16.3 - Prob. 16.3CPCh. 16.3 - 16.3 Electric Force on a Point Charge
Suppose...Ch. 16.3 - 16.4 Three Point Charges
Three identical point...Ch. 16.4 - 16.5 Effect of Doubling the Charge on the Hanging...Ch. 16.4 - Practice Problem 16.6 Electric Field at Point P...Ch. 16.4 - Practice Problem 16.7 Electric Field due to Two...Ch. 16.4 - 16.4
What is the direction of the electric field...
Ch. 16.4 - Prob. 16.8PPCh. 16.5 - Prob. 16.5CPCh. 16.5 - 16.9 Slowing Some Protons
If a beam of protons...Ch. 16.5 - Prob. 16.10PPCh. 16.6 - Prob. 16.11PPCh. 16.7 - Prob. 16.12PPCh. 16.7 - Prob. 16.13PPCh. 16 - Prob. 1CQCh. 16 - Prob. 2CQCh. 16 - Prob. 3CQCh. 16 - Prob. 4CQCh. 16 - Prob. 5CQCh. 16 - Prob. 6CQCh. 16 - Prob. 7CQCh. 16 - Prob. 8CQCh. 16 - Prob. 9CQCh. 16 - Prob. 10CQCh. 16 - Prob. 11CQCh. 16 - Prob. 12CQCh. 16 - 13. An electroscope consists of a conducting...Ch. 16 - Prob. 14CQCh. 16 - Prob. 15CQCh. 16 - 16. In some textbooks, the electric field is...Ch. 16 - Prob. 17CQCh. 16 - Prob. 18CQCh. 16 - Prob. 19CQCh. 16 - Prob. 1MCQCh. 16 - 2. In electrostatic equilibrium, the excess...Ch. 16 - Prob. 3MCQCh. 16 - Prob. 4MCQCh. 16 - Prob. 5MCQCh. 16 - 6. A tiny charged pellet of mass m is suspended at...Ch. 16 - Prob. 7MCQCh. 16 - Prob. 8MCQCh. 16 - Prob. 9MCQCh. 16 - Prob. 10MCQCh. 16 - 1. Find the total positive charge of all the...Ch. 16 - Prob. 2PCh. 16 - Prob. 3PCh. 16 - Prob. 4PCh. 16 - Prob. 5PCh. 16 - 6. A positively charged rod is brought near two...Ch. 16 - 7. A metal sphere A has charge Q. Two other...Ch. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - Prob. 10PCh. 16 - Prob. 11PCh. 16 - Prob. 12PCh. 16 - Prob. 13PCh. 16 - 14. How many electrons must be removed from each...Ch. 16 - Prob. 15PCh. 16 - 16. Two metal spheres separated by a distance much...Ch. 16 - 17. In the figure, a third point charge − q is...Ch. 16 - 18. Two point charges are separated by a distance...Ch. 16 - 19. A K+ ion and a Cl− ion are directly across...Ch. 16 - Prob. 20PCh. 16 - Prob. 21PCh. 16 - Prob. 22PCh. 16 - Prob. 23PCh. 16 - Prob. 24PCh. 16 - Prob. 25PCh. 16 - Prob. 26PCh. 16 - Prob. 27PCh. 16 - 28. The electric field across a cell membrane is...Ch. 16 - Prob. 29PCh. 16 - Prob. 30PCh. 16 - Prob. 31PCh. 16 - Prob. 32PCh. 16 - Prob. 33PCh. 16 - 34. What is the electric field at x = d (point...Ch. 16 - 35. What is the electric field at x = 2d (point S...Ch. 16 - Problems 34–38. Positive point charges q and 2q...Ch. 16 - Problems 34–38. Positive point charges q and 2q...Ch. 16 - Problems 34–38. Positive point charges q and 2q...Ch. 16 - 39. Sketch the electric field lines in the plane...Ch. 16 - 40. Sketch the electric field lines near two...Ch. 16 - 41. Find the electric field at point B, midway...Ch. 16 - 42. Find the electric field at point C, the center...Ch. 16 - Problems 41-44. Two tiny objects with equal...Ch. 16 - 44. Where would you place a third small object...Ch. 16 - Prob. 45PCh. 16 - 46. Two equal charges (Q = +1.00 nC) are situated...Ch. 16 - 47. Suppose a charge q is placed at point x = 0, y...Ch. 16 - 48. Two point charges, q1 = +20.0 nC and q2 =...Ch. 16 - Prob. 49PCh. 16 - 50. In each of six situations, a particle (mass m,...Ch. 16 - 51. An electron is placed in a uniform electric...Ch. 16 - 52. An electron is projected horizontally into the...Ch. 16 - 53. A horizontal beam of electrons initially...Ch. 16 - 54. A particle with mass 2.30 g and charge +10.0...Ch. 16 -
Problems 54 and 55
55. Consider the same...Ch. 16 - 56. ✦ Some forms of cancer can be treated using...Ch. 16 - Problems 5759. After the electrons in Example 16.9...Ch. 16 - Problems 5759. Alter the electrons in Example 16.9...Ch. 16 - Problems 59-61. A conducting sphere (radius a) is...Ch. 16 - The electric field between plates (A) is zero. As...Ch. 16 - 60. The inner sphere has a net charge of +6 μC and...Ch. 16 - Prob. 62PCh. 16 - Prob. 64PCh. 16 - Prob. 63PCh. 16 - Prob. 65PCh. 16 - Prob. 66PCh. 16 - Prob. 67PCh. 16 - 66. A hollow conducting sphere of radius R carries...Ch. 16 - Prob. 69PCh. 16 - Prob. 70PCh. 16 - Prob. 71PCh. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - Prob. 74PCh. 16 - Prob. 75PCh. 16 - Prob. 76PCh. 16 - Prob. 77PCh. 16 - 76. A thin, flat sheet of charge has a uniform...Ch. 16 - Prob. 79PCh. 16 - Prob. 80PCh. 16 - Prob. 81PCh. 16 - Prob. 82PCh. 16 - 81. In a thunderstorm, charge is separated through...Ch. 16 - 82. Two otherwise identical conducting spheres...Ch. 16 - 83. Two metal spheres of radius 5.0 cm carry net...Ch. 16 - 84. In the diagram, regions A and C extend far to...Ch. 16 - In Problem 86, the +2.0 C charge is at x = 0 and...Ch. 16 - Prob. 88PCh. 16 - Prob. 89PCh. 16 - 88. Consider two protons (charge +e), separated by...Ch. 16 - Prob. 91PCh. 16 - 90. A raindrop inside a thundercloud has charge...Ch. 16 - 91. An electron beam in an oscilloscope is...Ch. 16 - 92. A point charge q1 = +5.0 μC is fixed in place...Ch. 16 - Prob. 95PCh. 16 - 94. Object 4 has mass 90.0 g and hangs from an...Ch. 16 - Prob. 97PCh. 16 - Prob. 98PCh. 16 - Prob. 99PCh. 16 - Prob. 100PCh. 16 - Prob. 101PCh. 16 - Prob. 102PCh. 16 - Prob. 104PCh. 16 - Prob. 103PCh. 16 - Prob. 106PCh. 16 - Prob. 105PCh. 16 - Prob. 108PCh. 16 - Prob. 107PCh. 16 - Prob. 110PCh. 16 - Prob. 111PCh. 16 - Prob. 112PCh. 16 - Prob. 113PCh. 16 - Prob. 114PCh. 16 - Prob. 115PCh. 16 - Prob. 109P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Question 1 a) In J. J. Thomson experiment (1897), an electron moving horizontally with a constant speed vo enters in between the horizontal plates of a capacitor. The electric field strength between the plates of length L and distance d, is E. The vertical deviation of the electron at the moment of exit from the field region is measured to be Y. Derive the expression giving the electron's charge to mass ratio, i.e. e/m to be 2v,Y/CEL). (Recall that Thomson received Nobel Prize for his achievement.) b) Calculate e/m, knowing the following data. E=1.6x10* Newton/Coulomb, L=10 cm, Y=2.9 cm, v=2.19x10* km/s. (Be careful to use coherent units.)arrow_forwardYou are working on a research project in which you must control the direction of travel of electrons using deflection plates. You have devised the apparatus shown in the figure below. The plates are of length ℓ = 0.250 m and are separated by a distance d = 1.38 cm. Electrons are fired at vi = 5.20 ✕ 106 m/s into a uniform electric field from the left edge of the lower, positive plate, aimed directly at the right edge of the upper, negative plate. Therefore, if there is no electric field between the plates, the electrons will follow the broken line in the figure. With an electric field existing between the plates, the electrons will follow a curved path, bending downward. (a) Determine the range of angles (in degrees) over which the electron can leave the apparatus. (Assume ? is measured counterclockwise from the +x-axis. Enter your answers as a comma–separated list from smallest to largest. Do not enter units in your answer.) (b) Determine the electric field (in N/C) required…arrow_forward9 V E d m d ok L direction, created by two Consider a uniform electric field of magnitude Eo pointing in the very large and oppositely charged plates. The plates are contained in the (x,z) plane, are of length L=25 cm in the î direction, and are separated by a distance 2d=30 mm (the dimension in the k direction is irrelevant in this problem). A proton, q, is initially outside the gap between the two plates moving along the +x axis with a speed vo. The particle enters the region of uniform electric field at the midpoint between the two plates. Calculate the minimum speed vo needed for the particle not to hit the lower plate. Hint: Express your answer in terms of q, m, L, d, and E. Let E₁ = 796; mp = 1.67 x 10-27 Kg; lql = 1.602 x 10-1⁹ C. marrow_forward
- 27.26 A mad scientist invents a de- vice that is able to teleport every electron in their body to the center of the Earth (6.37×106 m below). We can make the as- sumption that the human body is mostly water with a bit of carbon and as such there will be about 3.2 × 1026 electrons per kilogram of body. If the mad scientist, who weighs 65 kg is so unwise as to actu- ally use this device on himself what will the magnitude of the attraction between his body (stripped of all electrons) and all the electrons newly deposited at the cen- ter of the Earth? (How does this compare with the gravitational attraction between the mad scientist and the Earth?)arrow_forwardTwo neutral, square, thin copper plates (15 cm per side) are situated parallel to each other and located 6 mm apart. A 9V battery is connected to the plates, such that the anode is connected to one plate and the cathode to the other plate, and the battery and plates reach a new electrostatic equilibrium. What is the magnitude and direction of the electric field between the two plates? Two neutral, square, thin copper plates (15 cm per side) are situated parallel to each other and located 6 mm apart. A 9V potential difference is applied across the two plates. What is the electric potential at a distance of 2 mm away from the negatively charged plate (define the negative plate to be at zero potential)?arrow_forwardA small ball of mass m=8.10×10−12 kg has acquired an excess charge. The ball is then placed between two parallel plates spaced x=0.00345 m apart, which have a potential difference of V=2110 V applied across them. In this configuration, the ball appears to be motionless, or floating in between the plates. What is the overall charge on the ball? negative? positive? or neutral? Calculate the number of electrons, ne, that the ball has either gained or lost. The acceleration due to gravity is g=9.81 m/s2, and the elementary unit of charge is e=1.60×10−19 C. ne=?arrow_forward
- Two thin conducting plates, each 25.0 cm on a side, are situated parallel to one another and 5.0 mm apart. If 10−11 electrons are moved from one plate to the other, what is the electric field between the plates?arrow_forward1.53 A particle with charge q=3 μC and mass 0.015 kg is tied to a non- conductive thread of length L = 17.5 cm long, which is tied at a pivot point p. The particle is on a friction-free horizontal table. At a given instant, the particle is released from rest, when the position of the thread forms an angle of 60°, with a uniform electric field of E = 350 V/m horizontally. Determine the speed of the particle when the wire and the electric field are collinear. E L=r FgE sen F=qEarrow_forwardANS. 9.310 Electrons accelerated from rest through 400 V are introduced at A into a uniform electric field E of intensity 150 V/cm as shown. If the electrons emerge at B 5x10-9 s later, determine (a) distance AB and (b) the angle 0. + + + B 1+arrow_forward
- In figure 2, an upwardly oriented uniform electric field E⃗ of a magnitude of 2.0 × 103 N / C has been established between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have a length L = 10.0 cm, and they are at a distance of d = 2.0 cm. An electron is sent between the plates from the left end of the lower plate. The initial velocity ⃗v0 of the electron forms an angle θ = 45◦ with the lower plate, and its magnitude is 6.0 × 106 m / s (a) Will the electron touch one of the plates? (b) If so, determine which one. Then find how far horizontally from the left end the electron will strike.arrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rp has charge -Q. The electric field E at a radial distance r from the central axis is given by the function: E = aer/ao + B/r + bo %| where alpha (a), beta (B), ao and bo are constants. Find an expression for its capacitance. First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by: Va Edr= Edr Calculating the antiderivative or indefinite integral, Vab = (-aaoe-r/ao + B + bo By definition, the capacitance C is related to the charge and potential difference by: C = Evaluating with the upper and lower limits of integration for Vab, then simplifying: C = Q/( (e-"b/ao - era/ao) + B In( ) + bo ( ))arrow_forwardFill in the blanks.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY